>
hilscher

COMPETENCE IN
COMMUNICATION

Protocol API
PROFINET IO Device

V3.12.0

Hilscher Gesellschaft fir Systemautomation mbH

www.hilscher.com
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

Introduction 2/390

Table of Contents

1 1] 4 oo [UYox 1o] o HO SO SOUPRRPI 8

1.1 ADOUL thiS DOCUMEBNT.....cciiiiiiiiiiitiite ittt ettt s bt e e st e e s aab e e s s bt e e s anbbe e e s anbbeeeeanbbeeeennbbeeeeaneee 8

L1.0.1 LISt Of REVISIONS ...eeeiieiiiiiittiee ittt ettt ettt ettt e e a bt e e e bt e e e ek b et e e anbb e e e sabte e e s nbbeeeeanbneeenan 8

A W [ox 1 o] g F= L @ YT o T PP 9

R Yy (=] I =T 01T =T o 1= o SRS 9

R A 1 1 =T a o [=To I W (o 11T o o] PSRRI 9

1.5 SPeCIfiCations fOr STACK.........cccuuiiiiiie e e e e e s s s e e e e e e s e san e e e e e e s annnnnrees 10

70 R Y0 T o] o To 4 (=To [od (o] (o oo] - PSPPSR PPPRPRN 10

1.5.2 TECHNICAI DALAceeiiiiiiieiiiiie ettt et e e bt e e st e e e et e e e ntn e e e st e e e nebeee s 10

ST B I 1111 = 11T £ T PP T PP OTPPR PP 12

1.6 Terms, Abbreviations and DEfiNitiONSuuuiiiiiiiiiiiiiiiiiiiiieeie e e e e e reerereerrree e rererrrrrereeeees 13

1.7 References t0 DOCUMENES.ccoiiuiii ittt et e ettt e ettt e e et e e e et b e e e abbe e e s anbbeeeeaneee 14

S T I = - | N[(= PP 15

1.9 Third Party SOftWAre LICENSESeuuiiiiiiiiiiiieiie e e e s ssite et e e e s s s e e e e e e s s st e e e e e e s s enntaaeeeeeeesennnnrens 18

2 IO a0 F= T g T=T] = 1K= 19

2.1 General Access Mechanisms 0N NEEX SYSIEMSuvviiiiiieeiiiiiiiieee e e serereree e e e e e nnrarer e e e e e e enneees 19

2.2 Accessing the Protocol Stack by Programming the Stacks PNS-IF Task’s Queue..................... 20

2.2.1 Getting the Receiver Task Handle of the Process QUEUEcceeeeiiiiiiiieieee i 20

2.3 Accessing the Protocol Stack via the Dual Port Memory Interface..........cccccceeveeeiiiiccieeeeee e 21

2.3.1 Communication Via MaIIDOXESccuuiiiiiiiie it 21

2.3.2 Using Source and Destination Variables COrreCtly...........couiiiiiiiiiiiiiiiiiiiiee e 21
2.3.2.1 How to use ulDest for Addressing rcX and the netX Protocol Stack by the System and

(01 gF= T e T=T 1Y =1 oo) PRI 21

2.3.22 Howtouse UISrc and UISKCHd.o 22

2.3.2.3 HOW tO ROULE ICX PACKETS.......veiiiiieiie ittt s 23

2.3.3 Obtaining useful Information about the Communication Channel...............ccccccovii e, 24

S - o (=Y B Y/ 1= PR 26

2.4.1 Timeout for RESPONSE PACKELSuciiiiiiiiiiiiiiiee ettt e e e s e e e e e st e e e e e s e stbeaeeaaee s 27

3 (DU -1 o] o A1V [T ot o o PP PRRPTPP 28

3.1 Cyclic Data (INPUt/OULPUL DALA)vvvrrreeeiiiiiiiiiee e e e e isiitee e e e e s s seteee e e s e e s s ssntnreeeeeeeessnnnrnneeeeeessennnnnens 28

3.1 INPUL PrOCESS DALA......eiiiiiiiiiiiiiiiiiiiiiiieieeeeeeteeeteeeeeeeeeeeeeee et et et e e eeeeeeeseeeeeeeeeeeesesesesesesesssssssesesssessnesenens 29

3.1.2 OULPUL PrOCESS D@ALAceeeeiiiiiiiiiiiiiiiiiiiiieitetee ettt ettt ettt ettt e ettt et e ee ittt ettt eeeeeeeeeeeeeseeseeeeseseessssesssenennnnnnn 29

3.2 ACYCIIC Data (MAIIDOXES) ..cciie ittt ettt e e e e et e e e e e e e s bt e b e e e e e e e e nanneees 30

3.2.1 General Structure of Messages or Packets for Non-Cyclic Data Exchangeccccccoviiiiiieeneennn. 31

3.2.2 StAtUS QN0 EITOF COURSeiiieeiiieiitet ettt e ettt e e e e e ettt e e e e e e e n b beeeeeaaesaannareeeaaeesaannneneeaaaeean 33

3.2.3 Differences between System and Channel MailDOXes...........ccuueiiiiiiiiiiiiiii e 33

R A Y= T o 1Y =Vl oL) RO 33

3.2.5 RECEIVE MAIDOX ...ttt et s 33

3.2.6 Channel Mailboxes (Details of Send and Receive MailboXes)cccovciviiiiiieiiiiiiiiieice e 34

3.2.7 PacKet fragmentatiOn...........ciiiiiiiiiiii ettt e e e e e e e e s e e e e e s a e e e e s n b raaaaaaaaan 35

R B = L LU ST PP PP PPPERPPR PP 39

3.3.1 COMIMON STALUSceeieeiiiititi ettt e e e ettt e e e e ettt e e e e e s st et e e e e e s s s b e s e e e e e e s nansneneeeeee s 39

R 70 20 0 R s I 14 o] (=T g g T=T) = Vi (o] o O UUPPRRR 39

3.3.1.2 Master IMPIEMENTALIONcoi ittt e e e e e e e e eaaa e an 43

3.3.1.3 Slave IMPIEMENTALIONoiiii et e e e et e e e e e s e nnneeeaaae s 43

B A b (=] T (=T] = LU O EEOT PP 44

G 20 S O o1 1o =T o 45

4 LCT= 1o S -1 = PR 46

4.1 Structure of the PROFINET DevVice Stack ..., 46

4.2 NAMING CONVENTIONSitieiiiiie ettt e e e e e ettt e e e e e s e babe et e e e e s s s abbebeeeeaeesaanbbeaeaeaeseaaassbbeeeaaassaanns 49

4.3 Overview about Essential FUNCHONAIILYcc.uvviierie i eeee e e e 49

N Y o1\ =T g = T 1= o PR OTPRT 50

I B 1= ot o o o Lo | PR OTPR 51

5 EXChaNQing CYCHC DAA......uueiiiiiiiiiiiiiiie ettt e e e e e s ettt e e e e e e e s e sanbbe e e e e e e e e e e nnneeees 52

N R 1= 1= - | I @] o =T o £ PR 52

5.2 Behavior regarding 10 data and IOPSoooiiiiiiiiiiice e e 54

5.3 Exchanging cyclic Data using Callback Interfacecccccoooiiiiiiiiiiiiii e 56

5.3.1 Overview of the Callback INtErfaCe..........ooo i 56

5.3.2 CallDACK FUNCLOMNSeeiiiiiiiie ettt ettt e et e e ettt e ekt e e enb e e sbbe e e s nebeee s 56

5.3.2.1 UpdateConsumerimage CallDack............cccuuiiiiieiiiiiiiiiiii st 57

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction 3/390

5.3.2.2 UpdateProviderImage CallDacKoooouueiiiiiaiiiiiiiee et 58
5.3.2.3 Event Handler CallDAcKc...iiiiuiiiiiiiiii ittt 59
6 = L0 ST T 1. = 0 60
6.1 COMMUNICALION STALEuuviiiieeiiiiiiiie i e e e s s st r e e e e s s e e e e e e s e st e e e e aeessasreteeeeeeeessnstaneeeeeesannnnnenns 60
6.1.1 Implementation fromM V3.10ccoiuiiiiiie et e e e e e s e e e e e e s et e e e e e s e raaaaaaea s 60
6.1.2 Legacy Implementation (V3.9 and €arlier)...........ccooiiiiiiiiiiiiiiiiiee e 60
7 L= o8 L= N =T = o PP
7.1 Configuring the 1O-DEVICE SEACK......cciiiiiiiciiieie e e e e e e e e e e e e e s s rare e e e e e e s e nanneees
7.1.1 Cyclic ProCesS Data IMaAQEccooiuviiiiiiee ittt ettt e e e e e e e e s et e e e e e s st e reeaaeessatbraeeeaeesan
7.1.2 Configuration of Process Data Images..
7.1.3 Configuration of the Submodulescccccveveeeiiins

7.1.4 Configuring the PROFINET IO Device Stack
7.1.4.1 Remark on Reconfiguration
7.1.5 Set Configuration Service......................
7.1.5.1 Set Configuration Request............c.cccccec.....
7.1.5.2 Set Configuration Confirmation...............ccccveeeeeeeiiiiiieeneennn.
7.1.5.3 Behavior when receiving a Set Configuration Command
7.1.6 Register APPICAtION SEIVICE.......ccuiiiiiiee et e e e s e e e e e s st er e e e e e e s satbeaaeaaaeaan
7.1.6.1 Register Application Request
7.1.6.2 Register Application Confirmation
7.1.6.3 Register Application for Selective Indications ONlY.............occoeiieiiiiiiiiiiiiee e
7.1.7 Unregister Application SErviCecccocoeiiiiiiiieiiee e
7.1.7.1 Unregister Application Request...................
7.1.7.2 Unregister Application Confirmation............
7.1.8 Register Fatal Error Callback Service..........ccccccceeiinnn.
7.1.8.1 Register Fatal Error Callback Request...........
7.1.8.2 Register Fatal Error Callback Confirmation
7.1.9 Unregister Fatal Error Callback Serviceccccceeeeenie
7.1.9.1 Unregister Fatal Error Callback Request..............cccuvveeee.
7.1.9.2 Unregister Fatal Error Callback Confirmationccoooiiiiiiiiiiioiee e
7.1.10 Set Port MAC AQAIESS SEIVICEuueiiiieeiiiiiieieee ettt e e e e ettt e e e e e s e antaeeeeeaaesaantaeeeeaaeeeaannneneeaaaeaan
7.1.10.1 Set Port MAC Address Request
7.1.10.2 Set Port MAC Address COoNfirMationccuiiiiiiieeiiiiee it
7.1.11 Set OEM PArameters SEIVICEcciiuuiiiiiiiiieiiiiiie e ittee et ee ettt et e et e e st e e ntb e e e e anbn e e e sntee e neneee s
7.1.11.1 Set OEM Parameters Request..........c........
7.1.11.2 Set OEM Parameters Confirmation
7.1.12 Load Remanent Data Servicecccccceviiiiiieeneenninns
7.1.12.1 Load Remanent Data Request...................
7.1.12.2 Load Remanent Data Confirmation
7.1.13 Configuration DEIELE SEIVICEueiiiiieei ittt e e et e e e e e e e e e e e e e e e nneeeeeas
7.1.13.1 Configuration Delete REQUEST..........cuiiiiiiiiiiiiiee ettt e e e e e s e snaraees
7.1.13.2 Configuration Delete Confirmation
7.1.14 St IO-IMAGE SEIVICEuuiiiiiieeeee ittt e e e e ettt e e e e e e e e e e e e e e st b e e e e e e e e s s stbareeaaeessatbsbeeeeeeseasnsreees
7.1.14.1 Set 10-IMAge REQUESTuuuuuruuitiiiiititirirereretererererererererereresereser e
7.1.14.2 Set IO-Image Confirmation...
7.1.15 Set IOXS CONFIg SEIVICEeeiiiieiiiiiiiiee ettt e e e e st e e e e e e e e e nnraeeaaaeeeanneneeeas
7.1.15.1 Set IOXS CONfig REOUEST . ..c.oeii ittt ettt e e e e e e e e e e eneeeeeas
7.1.15.2 Set IOXS Config Confirmation....................
7.1.16 Configure Signal ServiCe.........oooccueeieiiaeiiiiiiieeee e
7.1.16.1 Configure Signal Request
7.1.16.2 Configure Signal Confirmation........................
7.1.16.3 Example: Configure Signal Request packet
7.2 Connection EStabliShMENtocueiiiiiiii s
7.2.1 AR CRECK SEIVICE ...oiiuiieieiitiee ettt ettt et s bt e e ekt e e e bbbt e e sabb e e e e bb e e e eanteee s nanees
7.2.1.1 AR Check Indication
7.2.1.2 AR Check Response

7.2.2 Check Indication Service.............cceeeee..
7.2.2.1 Check Indication...................
7.2.2.2 ChECK RESPONSE ...ttt ettt e e e e ettt et e e e e e ettt e e e e e e eannneaeeeeaeeeenneeeeeas

7.2.3 Connect Request Done Service
7.2.3.1 Connect Request Done Indication

7.2.3.2 Connect REQUESE DONE RESPONSEuuuvuuerrirrirerirurarererererererererererererererereresererererr..
7.2.4 Parameter ENG SEIVICEcociiiiiiiiii ettt sttt sene e
7.2.4.1 Parameter End Indication.....
7.2.4.2 Parameter End Response
7.2.5 Application Ready Service.....................
7.25.1 Application Ready REQUESTuuiiiiiie ittt e e e e e e e e e eneeeeeas

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction 4/390

7.2.5.2 Application Ready CONfIrMAtIONcooiiiiiiiiieaa e 135
7.2.6 AR INDALA SEIVICEcouuiiieiitiie ettt ettt ettt e et e e e bt e e sk bt e e e aatb e e e sabb e e e e bb e e e sanbeeeenanees

7.2.6.1 AR InData Indication

7.2.6.2 AR INDAA RESPONSEuuutiiuitiriririrerirarerereseseresesareseseresesesesesesesesssssessresesesesererererererrr

7.2.7 Store REMANENT DAtA SEIVICEcvvvvviiiiiiiieieeieteeeeeeeeeeeesseereeseresrsrerererrrrreerrerererererrrer.r....—....
7.2.7.1 Store Remanent Data Indication
7.2.7.2 Store Remanent Data Response

7.3 Acyclic Events indicated by the StacCK.............eeiiiiiiiiiiiii e

7.3.1 REAU RECOI SEIVICE ...ttt ettt e e e et et e e e e e e e e e st aa e e e e e s eesbaaeeeeeseersannnns
7.3.1.1 Read Record Indication
7.3.1.2 Read Record Response

7.3.2 Write Record Service............uuvvvvvvvvvvnnnns
7.3.2.1 Write Record Indication
7.3.2.2 Write Record Response

7.3.3 AR Abort Indication SErVICeeevvvveveverevevererrrnnnnnns

7.3.3.1 AR Abort Indication Indication

7.3.3.2 AR Abort INdication RESPONSE.ueiiiiiiiiiiiiiii ettt e e et e e e e e e eaeeeeeas
7.3.4 SAVE StAtiON NAIME SBIVICE....uuuii ittt e e ettt e e e e e e e et e e e e e e e e esbb e e e e eeeenaaannns

7.3.4.1 Save Station Name Indication

7.3.4.2 Save Station Name RESPONSE........uuiiiiiiiiiiiiiiee et e e e e e e e e e s e neaeees
7.3.5 SAVE IP AUUIESS SEIVICE.....cevviiieiieireeeeeeieeeeeeeteeeesterstseeeseeareerersrrersrrrrrrerrrrrrererrrererererrr.....

7.3.5.1 Save IP Address Indication...

7.3.5.2 Save IP AdAresSs RESPONSE.......ccuuiiiiiiie ittt et e et e e e e s e et r e e e e e e e satraees
7.3.6 Start LED BIINKING SEIVICEcciiiiiiiiiiiie ettt e e e st e e e e e e e e e e e e e e e e nneeeeeas

7.3.6.1 Start LED Blinking Indication
7.3.6.2 Start LED Blinking Response ...
7.3.7 Stop LED Blinking Service...........cccccceeeen...
7.3.7.1 Stop LED Blinking Indication
7.3.7.2 Stop LED Blinking Response....
7.3.8 ReSset FACIOry SEtlNQS SEIVICEuuuiiiiiieii ittt e e a e e e s e e e e e s e aab e e e e e e e e asneaaees
7.3.8.1 Reset Factory Settings Indication
7.3.8.2 Reset Factory Settings Response
7.3.9 APDU Status Changea SEIVICEuuuieiieaiiiiiiiiiiea ettt e e e e ettt e e e e e s anbaaeeeaaaesaasbeeeeaeaesaannnsneeeas
7.3.9.1 APDU Status Changed Indication
7.3.9.2 APDU Status Changed Response..............
7.3.10 Alarm Indication ServiCe...........c.ccevviiiveeniieiicenie e
7.3.10.1 Alarm Indication....................
7.3.10.2 Alarm Indication Response...
7.3.11 Release Request Indication Service......
7.3.11.1 Release Request Indication........................
7.3.11.2 Release Request Indication Response
7.3.12 Link Status Changed Serviceccccceeeiiiiiieeeneeenanns
7.3.12.1 Link Status Changed INAICAtIONcouiuiiiiiiee e
7.3.12.2 Link Status Changed RESPONSEciiiiiiiiiiiiiiiee ettt e e s e s e
7.3.13 Error Indication Service
7.3.13. 1 ETOr INAICALON ...ttt et sn e e e
7.3.13.2 Error Indication Response
7.3.14 Read I&M Service...........coevcvriiieninenns
7.3.14.1 Read I&M Indication
7.3.14.2 Read |I&M Response
7.3.15 Write I&M Service.........cccceeveeeiiiiiineenn.
7.3.15.1 Write 1&M Indication
7.3.15.2 Write &M Response.............
7.3.16 Get ASSet SerVICe.......covvvvverireriiieninenns
7.3.16.1 Get Asset Indication
T7.3.16.2 GOt ASSET RESPONSE. . uuuuuiuirerireterererererereneresesesesesesesesesesesesesesesesesssesssssesesesesssssesessseserens
7.3.17 Parameterization SPeeAUP SUPPOITceeeiiiiieiiieiee ettt e e e ettt e e e e e s aantaee e e e e e e s e anneeeeaaaeseaanneaeeeas
7.3.17.1 Parameterization Speedup Support Indication
7.3.17.2 Parameterization Speedup Supported Response
7.3.18 EVENL INAICALION SEIVICEeeiiii ittt ettt e e e ettt e e e e e s et e e e e e e e e aannnebeeeeaeeeannnneeeas
7.3.18.1 Event Indication....................
7.3.18.2 Event Indication Response
7.4 Acyclic Events requested by the APplICAtIoNcovciiiiiiie e
T.4.1 Gt DIAgNOSIS SEIVICE .. .uuiiiiiiiieis ittt e e e e eet et e e e e e e e e e e e e e s st e e e e ae e e s s tbareeaaeesaatbsraeeeaeseassnsraees
7.4.1.1 Get DiagnoSiS REGUEST......cuiiiiiiiiiiiiiie e eestiee e e e e s st e e e e s ar e e e e e s e st e e e e e e s easansaaees
7.4.1.2 Get Diagnosis CoNnfirmMation.............ueiiieiiiiiiiiiiee e e e e e e e e e e e nereees
7.4.2 Get XMAC (EDD) Diagnosis Service...........ccccceeeeeennee
7.42.1 Get XMAC (EDD) Diagnosis Request
7.4.2.2 Get XMAC (EDD) Diagnosis Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction

7.4.3 ProCESS AGIMN SEIVICEeeeeiiiieai ittt ettt e e ettt e e e e e e e st bt e e eaa e e s aantbeeeeeaeasaannneaeeaaaeeaannnnneeas
7.4.3.1 ProcCess Alarm REOUEST......ccoiuuiiiiiiiie ittt e et st
7.4.3.2 Process Alarm Confirmation

7.4.4 DiagnOSiS AlGIM SEIVICE ...uuviiiiiiiiiiiiiiet e e ettt e e e e ettt e e e e e s s et e e e e e e s st b ereeeaeessatbsreeteeeseassnsreees
7.4.4.1 Diagnosis Alarm REQUESTcccciuiiiiiiee ettt e e e e s e e e e e e s e e snsreees
7.4.4.2 Diagnosis Alarm Confirmation

7.4.5 Return of Submodule Alarm Servicecccccceeeeernnees
7.45.1 Return of Submodule Alarm Request.........
7.4.5.2 Return of Submodule Alarm Confirmation ..

7.4.6 AR Abort Request SErviCe.........oocvuvvierieeiiiciiiieee e
7.4.6.1 AR Abort Request
7.4.6.2 AR Abort Request Confirmation

7.4.7 Plug Module SEerVICE.......c.uuuviiieiiiiiiiiiiee e ccieieee e
7471 Plug MOAUIE REQUEST ...ttt e e e e e e e e e e e e e nneeeeeas
7.4.7.2 Plug Module ConfirMationc..eueiiiiiioei et

7.4.8 Plug Submodule Serviceccueeee.
7.4.8.1 Plug Submodule Request
7.4.8.2 Plug Submodule ConfirMationccoiiiiiiiiiiee e e e e e e e
7.4.8.3 Extended Plug Submodule Request...........
7.4.8.4 Extended Plug Submodule Confirmation....

7.4.9 Pull Module Service.........ccccevveviniennnnen.

7.49.1 Pull Module Request
7.4.9.2 Pull Module Confirmation

7.4.10 PUll SUDMOAUIE SEIVICEeeiiiiiii ittt ettt ettt e e e e e et e e e e e e e e e annbe e e e e e e e e eannnaneeas
7.4.10.1 Pull SUDMOAUIE REQUESTc.oi ittt e e e e e e e eneeeeeas
7.4.10.2 Pull Submodule Confirmation ...

7.4.11 Get Station NAME SEIVICEoeiiiiiiiiiiiie ittt ettt e et e e s aabr e e sabe e e s bb e e e saateee e nanees
7.4.11.1 Get Station NamMe REQUEST........c..uiiiiiiee ettt e e e e e e e s e e satreees
7.4.11.2 Get Station Name Confirmation

7.4.12 Gt IP AGAIESS SEIVICEeeeiiiieei ittt e ettt ettt e e e e e e ettt e e e e e e s e n b beeeeeaeeeaannnseeeaeaeeaannnaneeas
7.4.12.1 Get IP AdAreSS REQUEST.....coiii ittt e e e e e e e e e e neeeeeas
7.4.12.2 Get IP Address Confirmation......................

7.4.13 Add Channel DiagnosiS ServiCeccccooucuuveeeeeeananns
7.4.13.1 Add Channel Diagnosis Request................
7.4.13.2 Add Channel Diagnosis Confirmation.........

7.4.14 Add Extended Channel Diagnosis Service......................
7.4.14.1 Add Extended Channel Diagnosis Request
7.4.14.2 Add Extended Channel Diagnosis Confirmation

7.4.15 Add Generic Diagnosis Service
7.4.15.1 Add Generic Channel DIagnoSiS REQUESTcccoiiiiiiiiiiiieaiiiiieee e
7.4.15.2 Add Generic Channel Diagnosis Confirmationccocooiiiiiiierieen e

7.4.16 Remove DiagnOSiS SEIVICEccocuueiiiiiaeiiiiiiee e
7.4.16.1 Remove Diagnosis Request.......................
7.4.16.2 Remove Diagnosis Confirmation

7.4.17 Get Submodule Configuration Servicecccccecouee.

7.4.18 Set Submodule State ServiCe.........cocooeveviiieeininiennne
7.4.18.1 Set Submodule State Request
7.4.18.2 Set Submodule State Confirmation

7.4.19 Get Parameter SErviCecouiiiueeieeiaeiiiiiieeae e
7.4.19.1 Get PArameter SEIVICEeeiiea ittt e e ettt e e e ettt e e e e e e et e e e e e e eanneaeeeeaeeaanneeeeeas
7.4.19.2 Get Parameter Confirmation

7.4.20 Add PE entity serviceccccccccevvvvvveeneenn.

O o R Yo (ol = =T) Y = To (U< OSSP
7.4.20.2 Add PE entity CONfIrMationcc.uviiiiiiiiiiiiiieee et

7.4.21 Remove PE entity service
7.4.21.1 Remove PE entity request
7.4.21.2 Remove PE entity confirmation

7.4.22 Update PE entity SErviCeoccueeieeieeiiiiiiiieeeeenaes
7.4.22.1 Update PE entity requesSt............cccvvveerennn.
7.4.22.2 Update PE entity confirmation

7.4.23 Send Alarm SEerVICE........ccovueiiiriiiieiiiee e
7.4.23.1 Send Alarm Request
7.4.23.2 Send Alarm CoNnfirMatioN..........oouuuieiiiie et e e e e e e e e e eaeeeeeas

8 S 0= od = L I 0 o 11 SRS

8.1

Behavior under special SIHUALIONSc..vviiiiieei e e e e e
8.1.1 Sequence of configuration eValUatioN...............eeiieeiiiiiiiiiiee e e e e e e nereee s
S 2 o] T [U =1 1T] o N o o) OO URPP
8.1.3 Setting Parameters by means 0f DCPuuiiiiiii e

PROFINET IO Device V3.12.0 | Protocol API

DOC111110A

PI17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction 6/390

8.2 MURIPIE ARS .ttt e oo ettt et e e e e e e e a b bbbt e e e e e e e e ab b be et e e e e e e e nbrbeeeaaaaaaaan 294
S A © 1Y 1T €] o] o IO RRRPR 294

8.2.2 Possibilities and Limitations for the Feature Shared DEVICE...........ccoivvieiiiiiii i 295

S TG T XY c Y Y oY = Vo = =T o | 296
8.4 PROFIENEIGY ASE ... e e b a b a bbb n b e bnnnannnnnnes 297
8.5 EtherNet MAC AGUrESSES. ... i e e e e a s e s s s aaaaeasaesnsassneansnsnnnsnsnsnsnsnnnnnnns 298
8.6 Usage of Linkable OBJECt MOAUIEcooiiiiiie et 299
LG A o] T X RO SERT P 299
8.6.1.1 HArdWAare RESOUITESueiiiiei ettt ettt e e e e e e et e e e e e e e e nne e e e e e e e e e annseeeeas 299

8.6.1.2 DiSADIE XIMACS ...ttt et 300

8.6.1.3 SYSHIME UNIL ...uiiiiiiiiiiiiiiiii et e e e e s e e e e e e s e et e e e e e e e e e anrraees 301

8.6.1.4 SHALIC TASK LISt ..ueiiiiiiiiiiiiiiie ettt e et 302

S A = N IS = Tod 14 11 (RO SRR 304

G B 1= 11 [o 10 111 RO SRPTT 308

G A T o1 o] o] (ol 0 LoV o RO EPP R 309
8.6.4.1 Fiber optic CONFIQUIALIONcoiiiiiiiiiiii e e e e 309

8.6.4.2 Medium Attachment Unit for FIDer OptiC.........coouii i 315

8.6.5 PROFINET Netload REQUIFEMENTS.c.cciiiiiiiiiiee ettt e e e s e e e e e s st e e e e e e e e s sneaeees 316

S A o = (@ 1o | \\| = I @7=T 1) i{o7= 1 o] [SRR PRO 318
8.7.1 RT Tests (Conformance class A, B and C)........ccccoiiiiiiiiiiiei ettt e e 318

S T I R B =T To3 ¢) 1[0] P OSSP 318

8.7.1.2 General Requirements for RT TeSIS.......cccciuiiiiie ittt e e 318

8.7.1.3 Common checks before Certification (GSDML)........ccuvieiieeiiiiiiiiieiee e 319

8.7.1.4 Basic Application BENAVIOKuuiiiiiiiiiiiieee e e e 319

8.7.2 IRT Tests (Conformance Class C ONIY).......ccuuuiiiiiiaiiiieii et e e e eeeeas 320
T2 R B =1 {ox ¢ o) (o] PSSP 320

8.7.2.2 General Requirements for IRT TeSESoiiuiiiiiieee i 320

8.7.2.3 Hardware Requirements for IRT TESISc.uvuiiiieiiiiiiiiiiee et e e 320

8.7.2.4 Software Requirements for IRT TESESccccuviiiieeeiiiiiiiiee et e s e 320

8.7.25 GSDML Requirements for IRT TeSIS......ccccuuiiiieeeiiiiiiiiiee et s e e e e esneveeeas 320

8.7.3 INEWOIK LOBA TOSES. .. .uiiiiiiiiie ittt ettt ettt et s bt e e et e e e aab e e e sab e e e et e e e senteee s nanees 321

S T 0 R B =2 ox ¢) (o] P OSSP 321

8.7.3.2 Requirements to the APPIICALIONcoi it 321

8.7.4 HOW t0 hANI@ I&M DALA.......coiiiiiiiiiiiiii ettt e e e ettt e e e e e e e b e e e e e e e e e nneaeeeas 322
T A O R @ 1V YT OSSP 322

8.7.4.2 Structure and access paths Of I&M ObJECES.......cooiiiiiiiiiiiii e 324

8.7.4.3 Usage of I&M with Hilscher PROFINET Protocolccccccoovviiiiiiiiiee i 325

8.8 Second DPM channel — Ethernet INterface. ... 326
SRS I F=Yo Tod g (o T oYU ESTA o] o] 1o o] o S OPPRSERR 328
8.10 PROFINET StatUS COUEuuuiiiiiiiiiiiiiiiiiii e saaaaaa s assasasssnanssssnnsnsnsnsnsnnnnnnns 330
8.10.1 The ErrorCode FIeIu ittt e e e e e st e e e e e e e e s e e e e e e e e e annnaneeas 331

8.10.2 The ErrorDECOAE FIEIHeeiiiiiiieitit ettt e e et e et s s 331

8.10.3 The ErrorCodel and ErrorCode2 Fields.cccuuiiiiiiiiiiiiie ittt 332
8.10.3.1 ErrorCodel and ErrorCode?2 for ErrorDecode = PNIORWcccccovviiiieiiiieenniincennne 332

8.10.4 ErrorCodel and ErrorCode?2 for ErrorDecode = PNIOccccciiiiiiiieiiiiiie e 333

8.10.5 ErrorCodel and ErrorCode2 for ErrorDecode is Manufacturer SpecifiC........cccccoviiuiiierieiiiiiiinenen. 338

8.11 Remanent Data HaNAIINGooiuuiiiiiieeieie ettt ettt e e e e e e s nbbbeeeaaaaeeaans 339
8.11.1 REMEANENT DALAeeeeiiiiiiiiiiiiiiiiiiiiiieiee ettt ettt ettt ettt ettt ettt eee et ettt ettt e e ee e e s e eeseseeeeessesseessnsenenennnne 339
8.11.2 Parameters ‘Name of Station’ and ‘IP Address Parameters’cccooiiiiiiieeeeeiiiiiieeee e 340

8.12 Identification & MaintenanCe 5 (I&M5)uuiiiiiiiiiiiii e a e 341
8.12.1 APIS fOr USAQE Of I&IMB ...ttt e e ettt e e e e e e et e e e e e e e e e nnnaeeeas 341

9 StAtUS/EITOr COUES OVEIVIEW ..cciviiieiiiiiie ittt ettt ee ettt e sttt e sttt e e st e e e sbb et e e sbb e e e e snbeeeeesnsbeeeesnneeeas 342
LS TR R € 1= o 1= - 1IN g o] £t 342
9.2 Status/Error Codes fOr CMOCTL TaSKiiiiiiiiiiiiiiicic i enenanennnnnnnnes 353
9.2.1 CMCTL-TaSK DIiagnOSiS-COUESuueieiieaiiiitiiiitea ettt e e e e e et e e e e e e s et aeeeaaaesaanneaeeeaaesaannsneeeas 357

9.3 Status/Error Codes fOr CM-DeV TaSKccciiiiiiiiiiiiiiiiiiiici e nannannnnnnes 358
9.3.1 CM-DeV-Task DIiagnOSIS-COUESeueiiiiiiiiiiiiiiiee et e e e ettt e e e e e st aee e e e e e e s s annraeeaaaeeeanneeeeeas 363

9.4 Status/Error Codes fOr EDD TasKcccciiiiiiiiiiiiiiiiiiii e aassnanansnnnnnsnnnnnnnnes 364
9.4.1 EDD-Task DiagnOSiS-COUES. tuiiieeieai ittt ee e e e e ettt e e e e e ettt e e e e e e s e antaeeeeaaaesaannnraeeaaaeeaannnsneeeas 364

9.5 Status/Error Codes fOr ACP TaSKcccciiiiiiiiiiiiiiii i aaaaaaasssansnanansnnnnnnnnes 365
9.5.1 ACP-Task DIiagnOSiS-COUESuuuiiiiiieaiiiittii e ettt e e e ettt e e e e e e s et ee e e e e e e e e anneaeeaeaeeaannseeeeas 368

9.6 Status/Error Codes fOr DCP TasKcciiiiiiiiiiiiiii i aaaaaanansnenanenennnnnnes 369
9.6.1 DCP-Task DiagnOSiS-COUES.cciuiueiiieie ettt ee e e ettt e e e e e et e e e e e e e s e taeeeeaaaaaaasnseeeeaaesaannnsaeeeas 372

9.7 Status/Error Codes fOr MGT TaASK.......ccciiiiiiiiiiiiiii i aaaaaananannnanansnnnnnnnnes 373
9.7.1 MGT-Task DiagnNOSIS-COUERSuuiuiiiiiieaiiiittii et e e ettt e e e e ettt e e e e e e s e st beeeeaaaeeaannebeeeaaeeaannsnneeas 376

9.8 Status/Error Codes for FODMI-TASK.......ciiiiiiiiiiiiiiii e aananennnnnnnnes 376

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction 7/390

9.9 Status/Error Codes fOr RPC-TaSK.......cciiiiiiiiiii e ennnnnnnnes 376

9.9.1 RPC-Task DiagnOSiS “COUES.uuueiiiiieai ittt e e ettt e e e e e e e et eeeeaaeasaantaeeeeaaaeaaannsseeeaaesaaannsaeeeas 380

0 I @ Yo [T aTo o)il D=V [Lo 1= KRR 381
5 O 1 o o 1= o 1 PR 385
0 I o 1=] PP 385

3 S o) o U PP PP RPPTT 388

G T o | =T £ PSPPI 390

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction

8/390

1

Introduction

1.1 About this Document

This manual describes the user interface of the PROFINET I0-Device implementation on netX.
The aim of this manual is to support the integration of devices based on the netX chip into own
applications based on direct access to protocol stack.

1.11

List of Revisions

Rev

Date

Name

Revisions

15

2016-03-07

AM, BM, AR

Firmware/stack version V3.10.0

Section Packet Types and Timeout for Response Packets added.
Chapter Status Information added.

Update of NXLOM section for startup parameters.

Fix wrong information in Store Remanent Data Service.

Describe GSDML V2.32 relations to Process Alarm Service.

Extended section Possibilities and Limitations for the Feature Shared Device
regarding certification requirements.

Chapter Isochronous Application added.
Ethernet MAC Addresses added.
Added more details to the chapter Fiber optic device.

16

2016-11-17

AR, BM, RA,
HH

Firmware/stack version V3.11.0

Check indication: explained (sub)module states for indication and response
separately

Section Behavior regarding IO data and IOPS revised.

New subtype PNS_IF_SET_OEM_PARAMETERS_TYPE_8 added to section
Set OEM Parameters Request

Hint added regarding required handling of I&MOFilterData in Read I&M Service
and How to handle I&M Data.

Section Remanent Data Handling added.

Section Coding of Diagnosis added.

17

2017-05-12

AM, RA, HH

Section Get Asset Service added.

Reworked Sections Set OEM Parameters Service, Read 1&M Service, Write
I&M Service, Get Parameter Service regarding 1&M 5 handling.

Clarification regarding supported Ethernet interface modes.

Sections Add PE entity service, Remove PE entity service, and Update PE
entity service added.

Section PROFlenergy ASE added.
Section Send Alarm Service added.
Section Identification & Maintenance 5 (1&M5) added.

Clarification regarding 10 Supervisor added to section Possibilities and
Limitations for the Feature Shared Device.

Table 1: List of Revisions

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction 9/390

1.2 Functional Overview
The stack has been written in order to meet the IEC 61158 Type 10 specification. You as a user
are getting a capable and a general-purpose Software package with following features:

Realization of the PROFINET IO-Device context management

Realization of the PROFINET IO-Device cyclic data exchange

Realization of the PROFINET IO-Device acyclic data exchange

Realization of the DCP protocol

1.3 System Requirements

This software package has following system requirements to its environment:
netX-Chip as CPU hardware platform
operating system rcX
if Fast Startup shall be used the flash containing the firmware shall be fast enough

if configuration is done via the packet interface the user application has to have access to a
non-volatile memory (e.g. a flash) with a capacity to store a minimum of 8192 Byte

1.4 Intended Audience

This manual is suitable for software developers with the following background:
Knowledge of the programming language C
Knowledge of the use of the real-time operating system rcX
Knowledge of the Hilscher Task Layer Reference Model
Knowledge of the IEC 61158 Type 10 specification

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction 10/390

1.5 Specifications for Stack
151 Supported Protocols

RTC — Real time Cyclic Protocol, class 1 (unsynchronized), class 3 (synchronized)
RTA — Real time Acyclic Protocol

DCP — Discovery and Configuration Protocol

CL-RPC - Connectionless Remote Procedure Call

LLDP — Link Layer Discovery Protocol

SNMP — Simple Network Management Protocol

MRP — MRP Client is supported

15.2 Technical Data

Maximum number of total cyclic input data 1440 bytes
Maximum number of total cyclic output data 1440 bytes

Maximum number of submodules 255 submodules per Application Relation at the
same time, 1000 submodules can be configured
Multiple Application Relations (AR) The stack can handle up to 8 10-ARs, one

Supervisor AR and one Supervisor-DA AR at the
same time. If executed on netX50 this is limited to 2
I0-ARs instead of 8.

See section Possibilities and Limitations for the
Feature Shared Device (on page 295) for further
details.

Acyclic communication Read/Write Record
- up to 8 KB for NXLFW (using DPM fragmentation)
- up to 32 KB for NXLOM

Alarm Types Process Alarm, Diagnostic Alarm, Return of
Submodule Alarm, Plug Alarm (implicit), Pull Alarm
(implicit), Update Alarm, Status Alarm, Isochronous
Problem Alarm, Upload and Retrieval notification
alarm

Other alarm types are not supported

Identification & Maintenance Reading and writing of I&M1-4.1
Reading of 1&M5 for NXLFW

Asset Management Up to 199 Assets

PROFIenergy PROFIenergy ASE implementation with one PE
entity per submodule

Topology recognition LLDP, SNMP V1, MIB2, physical device

1 If the stack is configured to handle 1&M by itself (this is the default) the GSDML device description
shall be adapted to indicate the support of I&M1-4.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction 11/390

Minimum cycle time 1ms for RT_CLASS 1 (all implementations)
1ms for netX50 and RT_CLASS_3
250us for netX51 and RT_CLASS 3
250us for netX100/500 and RT_CLASS_3

IRT Support RT_CLASS 3

MediaRedundancy MRP client

Additional supported features DCP, VLAN- and priority tagging, Shared Device
(but only 1 RTC3 AR in total)

Baud rate 100 MBit/s

Data transport layer Ethernet I, IEEE 802.3

PROFINET 10 specification V2.3, legacy startup of specification v2.2 is
supported

Firmware/stack available for netX

netx 50 yes
netX 100, netX 500 yes
netxX 51 yes

Configuration

Configuration is done by sending packets to the stack or by using SYCON.net configuration
database.

Diagnostic

Some elementary diagnosis information can be read using the service “Get Diagnosis Service”.
This service might be extended in future.

Cyclic input/output data

The stack has the ability to convert the byte order of cyclic process data image.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction 12/390

15.3 Limitations

RT over UDP not supported

Multicast communication not supported
Only one device instance is supported
DHCP is not supported

Fast Startup is implemented in the stack. However some additional hardware limitations
apply to use it.

The amount of configured 10-data influences the minimum cycle time that can be reached.
Only 1 Input-CR and 1 Output-CR per AR are supported

Using little endian byte order for cyclic process data instead of default big endian byte order
may have an negative impact on minimum reachable cycle time

System Redundancy (SR-AR) and Dynamic Reconfiguration (formerly known as
Configuration-in-Run, CiR) are not supported

Max. 255 submodules can be used simultaneously within one specific Application Relation
SharedInput is not supported

MRPD is not supported

DFP and other HighPerformance-profile related features are not supported

PDEV functionality is only supported for submodules located in slot O

Submodules can not be configured or used by an AR in subslot O

DAP and PDEV submodules only supported in slot O.

Loadable firmware does not support Flash Device Label

Only one 10 Supervisor AR is supported in parallel.

Only for LOM

The protocol stack cannot be used together with the standard two-port switch of rcX.
The protocol stack cannot be used together with the standard MAC of rcX.

Thus the protocol stack can exclusively be used with the PROFINET IO-Device switch.
Consequently, in any case 3 XC channels are required at the netX 100 and the netX 500.

It is not possible to manually configure the integrated Hilscher TCP/IP task with its service
“TCPIP_IP_CMD_SET_CONFIG_REQ” when using PROFINET IO Device protocol stack. The

service will succeed but has no effect.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction

13/390

1.6 Terms, Abbreviations and Definitions

Term Description

AP (-task) Application (-task) on top of the stack
DCP Discovery and Basic Configuration Protocol
API Application Process Identifier

AR Application Relation

RT_CLASS 1 Real-Time communication Class 1
RT_CLASS 2 Real-Time communication Class 2
RT_CLASS_3 Real-Time communication Class 3
CIR Configuration in Run

10 Input/Output

RTA Real-Time Protocol Acyclic

CR Communication Relationship

I0CS 10 Consumer Status

IOPS 10 Provider Status

PNIOC PROFINET IO-Controller

PNS PROFINET IO-Device

CM Context Management

CMDEV Device Context Management
CMCTL Controller Context Management
NRPM Name Resolution Protocol Machine
RMPM Resource Manager Protocol Machine
ALPMI Alarm Protocol Machine Initiator
ALPMR Alarm Protocol Machine Responder
LMPM Link Mapping Protocol Machine

RPC Remote Procedure Call

APMR Acyclic Protocol Machine Receiver
APMS Acyclic Protocol Machine Sender
CPM Consumer Protocol Machine

PPM Provider Protocol Machine

FSPM FAL Service Protocol Machine
PNS_IF PROFINET IO-Device stack’s Application Interface task
LOM Linkable Object Module

LFW Loadable Firmware

FODMI Fiber Optic Diagnostic Media Interface
1&M Identification & Maintenance

Table 2: Terms, Abbreviations and Definitions

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Introduction 14/390

1.7

References to Documents

This document refers to the following documents:

[1]

[2]
[3]
[4]
[5]
[6]
[7]

[8]

[9]

PROFIBUS International: Technical Specification for PROFINET 10: Application Layer
protocol for decentralized periphery, Version 2.3Ed2MU3, March 2016, Order No. 2.722,
English.

Hilscher Gesellschaft fiir Systemautomation mbH: Operating System Manual, Realtime
Communication System for netX, Kernel APl Function Reference; Revision 6; English, 2007.

Hilscher Gesellschaft fir Systemautomation mbH: DPM Interface Manual for netX based
Products, 2012, Revision 12. English.

Hilscher Gesellschaft fir Systemautomation mbH: TCP/IP Protocol Interface Manual;
Revision 8, 2009, English.

Hilscher Gesellschaft fir Systemautomation mbH: netX 1/O Synchronization, 2006-2011,
Revision 5, English.

Hilscher Gesellschaft fiir Systemautomation mbH: Application note, PROFINET 1O Device
Synchronous application using IRT, 2014, Revision 1, English.

Hilscher Gesellschaft fir Systemautomation mbH: Protocol APl Ethernet, 2014, Revision 8,
English.

PROFIBUS International: PROFINET Field Devices, Recommendations for Design and
Implementation, http://www.profibus.com/nc/download/technical-descriptions-
books/downloads/profinet-field-devices-recommendations-for-design-and-
implementation/display/

PROFIBUS International: Profile Guidelines Part 1: Identification & Maintenance Functions,
Version V2.1, May 2016, Order No. 3.502, English
Table 3: References to Documents

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

http://www.profibus.com/nc/download/technical-descriptions-books/downloads/profinet-field-devices-recommendations-for-design-and-implementation/display/
http://www.profibus.com/nc/download/technical-descriptions-books/downloads/profinet-field-devices-recommendations-for-design-and-implementation/display/
http://www.profibus.com/nc/download/technical-descriptions-books/downloads/profinet-field-devices-recommendations-for-design-and-implementation/display/

Introduction 15/390

1.8 Legal Notes

Copyright
© Hilscher Gesellschaft fiir Systemautomation mbH

All rights reserved.

The images, photographs and texts in the accompanying materials (in the form of a user's manual,
operator's manual, Statement of Work document and all other document types, support texts,
documentation, etc.) are protected by German and international copyright and by international
trade and protective provisions. Without the prior written consent, you do not have permission to
duplicate them either in full or in part using technical or mechanical methods (print, photocopy or
any other method), to edit them using electronic systems or to transfer them. You are not permitted
to make changes to copyright notices, markings, trademarks or ownership declarations.
lllustrations are provided without taking the patent situation into account. Any company names and
product designations provided in this document may be brands or trademarks by the
corresponding owner and may be protected under trademark, brand or patent law. Any form of
further use shall require the express consent from the relevant owner of the rights.

Important notes

Utmost care was/is given in the preparation of the documentation at hand consisting of a user's
manual, operating manual and any other document type and accompanying texts. However, errors
cannot be ruled out. Therefore, we cannot assume any guarantee or legal responsibility for
erroneous information or liability of any kind. You are hereby made aware that descriptions found
in the user's manual, the accompanying texts and the documentation neither represent a
guarantee nor any indication on proper use as stipulated in the agreement or a promised attribute.
It cannot be ruled out that the user's manual, the accompanying texts and the documentation do
not completely match the described attributes, standards or any other data for the delivered
product. A warranty or guarantee with respect to the correctness or accuracy of the information is
not assumed.

We reserve the right to modify our products and the specifications for such as well as the
corresponding documentation in the form of a user's manual, operating manual and/or any other
document types and accompanying texts at any time and without notice without being required to
notify of said modification. Changes shall be taken into account in future manuals and do not
represent an obligation of any kind, in particular there shall be no right to have delivered
documents revised. The manual delivered with the product shall apply.

Under no circumstances shall Hilscher Gesellschaft fir Systemautomation mbH be liable for direct,
indirect, ancillary or subsequent damage, or for any loss of income, which may arise after use of
the information contained herein.

Liability disclaimer

The hardware and/or software was created and tested by Hilscher Gesellschaft fir
Systemautomation mbH with utmost care and is made available as is. No warranty can be
assumed for the performance or flawlessness of the hardware and/or software under all application
conditions and scenarios and the work results achieved by the user when using the hardware
and/or software. Liability for any damage that may have occurred as a result of using the hardware
and/or software or the corresponding documents shall be limited to an event involving willful intent
or a grossly negligent violation of a fundamental contractual obligation. However, the right to assert
damages due to a violation of a fundamental contractual obligation shall be limited to contract-
typical foreseeable damage.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction 16/390

It is hereby expressly agreed upon in particular that any use or utilization of the hardware and/or
software in connection with

Flight control systems in aviation and aerospace;
Nuclear fusion processes in nuclear power plants;
Medical devices used for life support and

Vehicle control systems used in passenger transport

shall be excluded. Use of the hardware and/or software in any of the following areas is strictly
prohibited:

For military purposes or in weaponry;

For designing, engineering, maintaining or operating nuclear systems;
In flight safety systems, aviation and flight telecommunications systems;
In life-support systems;

In systems in which any malfunction in the hardware and/or software may result in physical
injuries or fatalities.

You are hereby made aware that the hardware and/or software was not created for use in
hazardous environments, which require fail-safe control mechanisms. Use of the hardware and/or
software in this kind of environment shall be at your own risk; any liability for damage or loss due to
impermissible use shall be excluded.

Warranty

Hilscher Gesellschaft flr Systemautomation mbH hereby guarantees that the software shall run
without errors in accordance with the requirements listed in the specifications and that there were
no defects on the date of acceptance. The warranty period shall be 12 months commencing as of
the date of acceptance or purchase (with express declaration or implied, by customer's conclusive
behavior, e.g. putting into operation permanently).

The warranty obligation for equipment (hardware) we produce is 36 months, calculated as of the
date of delivery ex works. The aforementioned provisions shall not apply if longer warranty periods
are mandatory by law pursuant to Section 438 (1.2) BGB, Section 479 (1) BGB and Section 634a
(1) BGB [Burgerliches Gesetzbuch; German Civil Code] If, despite of all due care taken, the
delivered product should have a defect, which already existed at the time of the transfer of risk, it
shall be at our discretion to either repair the product or to deliver a replacement product, subject to
timely notification of defect.

The warranty obligation shall not apply if the notification of defect is not asserted promptly, if the
purchaser or third party has tampered with the products, if the defect is the result of natural wear,
was caused by unfavorable operating conditions or is due to violations against our operating
regulations or against rules of good electrical engineering practice, or if our request to return the
defective object is not promptly complied with.

Costs of support, maintenance, customization and product care

Please be advised that any subsequent improvement shall only be free of charge if a defect is
found. Any form of technical support, maintenance and customization is not a warranty service, but
instead shall be charged extra.

Additional guarantees

Although the hardware and software was developed and tested in-depth with greatest care,
Hilscher Gesellschaft fir Systemautomation mbH shall not assume any guarantee for the suitability
thereof for any purpose that was not confirmed in writing. No guarantee can be granted whereby

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction 17/390

the hardware and software satisfies your requirements, or the use of the hardware and/or software
is uninterruptable or the hardware and/or software is fault-free.

It cannot be guaranteed that patents and/or ownership privileges have not been infringed upon or
violated or that the products are free from third-party influence. No additional guarantees or
promises shall be made as to whether the product is market current, free from deficiency in title, or
can be integrated or is usable for specific purposes, unless such guarantees or promises are
required under existing law and cannot be restricted.

Confidentiality

The customer hereby expressly acknowledges that this document contains trade secrets,
information protected by copyright and other patent and ownership privileges as well as any related
rights of Hilscher Gesellschaft fir Systemautomation mbH. The customer agrees to treat as
confidential all of the information made available to customer by Hilscher Gesellschaft fir
Systemautomation mbH and rights, which were disclosed by Hilscher Gesellschaft fir
Systemautomation mbH and that were made accessible as well as the terms and conditions of this
agreement itself.

The parties hereby agree to one another that the information that each party receives from the
other party respectively is and shall remain the intellectual property of said other party, unless
provided for otherwise in a contractual agreement.

The customer must not allow any third party to become knowledgeable of this expertise and shall
only provide knowledge thereof to authorized users as appropriate and necessary. Companies
associated with the customer shall not be deemed third parties. The customer must obligate
authorized users to confidentiality. The customer should only use the confidential information in
connection with the performances specified in this agreement.

The customer must not use this confidential information to his own advantage or for his own
purposes or rather to the advantage or for the purpose of a third party, nor must it be used for
commercial purposes and this confidential information must only be used to the extent provided for
in this agreement or otherwise to the extent as expressly authorized by the disclosing party in
written form. The customer has the right, subject to the obligation to confidentiality, to disclose the
terms and conditions of this agreement directly to his legal and financial consultants as would be
required for the customer's normal business operation.

Export provisions

The delivered product (including technical data) is subject to the legal export and/or import laws as
well as any associated regulations of various countries, especially such laws applicable in
Germany and in the United States. The products / hardware / software must not be exported into
such countries for which export is prohibited under US American export control laws and its
supplementary provisions. You hereby agree to strictly follow the regulations and to yourself be
responsible for observing them. You are hereby made aware that you may be required to obtain
governmental approval to export, reexport or import the product.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Introduction 18/390

1.9 Third Party Software Licenses

SNMP

For SNMP functionality the PROFINET IO RT/IRT Device Protocol stack uses third party software

that is licensed under the following licensing conditions:
/***

Copyright 1988, 1989 by Carnegie Mellon University
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of CMU not be

used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.

CMU DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING

ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
CMU BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR

ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

SOFTWARE.
Sk o o K ok o K o K K K K K KRR R K K SR KR KR KR KK KR KR SRR KR KRR R KR K ok

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Fundamentals 19/390

2 Fundamentals
2.1 General Access Mechanisms on netX Systems

This chapter explains the possible ways to access a Protocol Stack running on a netX system:
1. By accessing the Dual Port Memory Interface directly or via a driver.
2. By accessing the Dual Port Memory Interface via a shared memory.
3. By interfacing with the Stack Task of the Protocol Stack.

The picture below visualizes these three ways:

Y Y
(Extended) Status Block Send Mailbox Reveive Mailbox Output Data Image Input Data Image
A A A

AP Task

................

@— Fieldbus Task(s)

Network Abstraction Layer

Network

Figure 1: The 3 different Ways to access a Protocol Stack running on a netX System

This chapter explains how to program the stack (alternative 3) correctly while the next chapter
describes accessing the protocol stack via the dual-port memory interface according to alternative
1 (and 2, if the user application is executed on the netX chip in the context of the rcX operating
system and uses the shared DPM). Finally, chapter 5 titled “The Application Interface” describes
the entire interface to the protocol stack in detail. Depending on you choose the stack-oriented
approach or the Dual Port Memory-based approach, you will need either the information given in
this chapter or those of the next chapter to be able to work with the set of functions described in
chapter 5. All of those functions use the four parameters ulDest, ulSrc, ulDestld and
ullSrcld. This chapter and the next one inform about how to work with these important
parameters.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Fundamentals 20/390

2.2 Accessing the Protocol Stack by Programming the
Stacks PNS-IF Task’s Queue

In general, programming the AP-Task or the stack has to be performed according to the rules
explained in the Hilscher Task Layer Reference Manual. There you can also find more information
about the variables discussed in the following.

2.2.1 Getting the Receiver Task Handle of the Process Queue

To get the handle of the process queue of the PNS_IF —Task, the output of the Function
PNS_StacklInit() shall be used:

PROFINET_I10DEVICE_STARTUPPARAMETER_T tPNSParam /* PNS Stack Parameters */
PROFINET_IODEVICE_TASK RESOURCES T *ptPNSRsc /* Pointer to PNS Resources */
TLR_HANDLE hQuePnslIf; /* PNS-IF Task Queue */

/* Fill in tPNSParam */

IT (TLR_S OK == PNS_Stacklnit(&tPNSParam, &ptPNSRsc))

hQuePnslIf = ptPNSRsc->hQuePnsif;

}

For backwards compatibility, the stack still supports identifying the PNS-IF Task Queue using the
macro TLR_QUE_IDENTIFY(). It is described in detail within section 10.1.9.3 of the Hilscher Task
Layer Reference Model Manual. This macro delivers a pointer to the handle of the intended queue
to be accessed (which is returned within the third parameter, phQue), if you provide it with the
name of the gueue and the instance of the PNS Task. (See
PROFINET_IODEVICE_STARTUPPARAMETER_T) The correct ASCIl-queue names for accessing
the PNS_ IF —Task which you have to use as current value for the first parameter (pszldn) is

ASCII Queue Name Description

“QUE_PNS_IF" Name of the PNS__IF —Task process queue
Table 4: Names of Queues in PROFINET Firmware

PROFINET_I10DEVICE_STARTUPPARAMETER_T tPNSParam /* PNS Stack Parameters */
PROFINET_IODEVICE_TASK RESOURCES T *ptPNSRsc /* Pointer to PNS Resources */
TLR_HANDLE hQuePnslIf; /* PNS-IF Task Queue */

/* Fill in tPNSParam */

IT (TLR_S OK == PNS_Stacklnit(&tPNSParam, &ptPNSRsc))

{
TLR_QUE_IDENTIFY(*“QUE_PNS_IF”, tPNSParam.ullnstance, &hQuePnsiT);

}

The handle hQuePnsiT has to be used as value ulDest in all initiator packets the AP-Task
intends to send to the PNS_IF —Task . This handle is the same handle that has to be used in
conjunction with the macros like TLR_QUE_SENDPACKET_FIFO/LIFO() for sending a packet to
the respective task.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Fundamentals 21/390

2.3 Accessing the Protocol Stack via the Dual Port Memory
Interface

2.3.1 Communication via Mailboxes

The mailbox of each communication channel has two areas that are used for non-cyclic message

transfer to and from the netX.

Send Mailbox Packet transfer from host system to netX firmware.

Receive Mailbox Packet transfer from netX firmware to host system.

For more details about acyclic data transfer via mailboxes see section Acyclic Data (Mailboxes)
(page 30) in this context, is described in detail in section General Structure of Messages or
Packets for Non-Cyclic Data Exchange (page 31) while the possible codes that may appear are
listed in section Status and Error Codes (page 33).

However, this section concentrates on correct addressing the mailboxes.

2.3.2 Using Source and Destination Variables correctly

2.3.2.1 How to use ulDest for Addressing rcX and the netX Protocol Stack by
the System and Channel Mailbox

The preferred way to address the netX operating system rcX is through the system mailbox; the
preferred way to address a protocol stack is through its channel mailbox. All mailboxes, however,
have a mechanism to route packets to a communication channel or the system channel,
respectively. Therefore, the destination identifier ulDest in a packet header has to be filled in
according to the targeted receiver. See the following example:

! o o = N I o o = o I o o = o~ !
q S o o q <] o o N S o o
| % < = = | X = < = | X = = < |
. S S S S . S S S S . s) (&) S S
| 1l It 1l 1l | 1l 1l It 1l | 1l 1l 1l 1l |
. = — o + . o + — — . + o + o .
0 %) 7] %) 7] 7 %) 7 %) 7] 7 7]
|)))) |])) o) |)] o)] |
lejajaeljlael:fe|jlagjaejael:|1a121a]a
| =] S S S | S =] S =] | S S =] S |
N 1 T T T T !
| | | | | | | |
. . | | | | .
1 1 1 1 — —
System Channel 0 Channel 1
Mailbox Mainbox Mailbox

P NN

|

|

|

i

i

|

netX OS |
|

VQL——‘QV

! ! !
| | | |
i I AP Task 2

) , 1)

Figure 2: Use of ulDest in Channel and System Mailbox

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Fundamentals 22/390

For use in the destination queue handle, the tasks have been assigned to hexadecimal numerical
values as described in the following table:

ulDest Description

0x00000000 | Packet is passed to the netX operating system rcX

0x00000001 | Packet is passed to communication channel 0

0x00000002 | Packet is passed to communication channel 1

0x00000003 | Packet is passed to communication channel 2

0x00000004 | Packet is passed to communication channel 3

0x00000020 | Packet is passed to communication channel of the mailbox

else Reserved, do not use

Table 5: Meaning of Destination-Parameter ulDest.Parameters

The figure and the table above both show the use of the destination identifier ulDest.

A remark on the special channel identifier 0X00000020 (= Channel Token). The Channel Token is
valid for any mailbox. That way the application uses the same identifier for all packets without
actually knowing which mailbox or communication channel is applied. The packet stays ‘local’. The
system mailbox is a little bit different, because it is used to communicate to the netX operating
system rcX. The rcX has its own range of valid commands codes and differs from a communication
channel.

Unless there is a reply packet, the netX operating system returns it to the same mailbox the
request packet went through. Consequently, the host application has to return its reply packet to
the mailbox the request was received from.

2.3.2.2 How to use ulSrc and ulSrclid

Generally, a netX protocol stack can be addressed through its communication channel mailbox.
The example below shows how a host application addresses a protocol stack running in the
context of a netX chip. The application is identified by a number (#444 in this example). The
application consists of three processes identified by the numbers #11, #22 and #33. These
processes communicate through the channel mailbox with the AP task of the protocol stack. Have
a look at the following figure:

Application #444

Process #11
Process #22
Process #33

Channel
Mainbox

netX Protocol stack
AP Task 1

Figure 3: Using ulSrc and ulSrcld

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Fundamentals 23/390

Example

This example applies to command messages initiated by a process in the context of the host
application. If the process #22 sends a packet through the channel mailbox to the AP task, the
packet header has to be filled in as follows:

Object Variable Numeric Value | Explanation
Name
Destination ulDest =32 This value needs always to be set to 0x00000020 (the channel
Queue Handle (0x00000020) | token) when accessing the protocol stack via the local
communication channel mailbox.
Source Queue ulSrc = 444 Denotes the host application (#444).
Handle
Destination ulDestld =0 In this example it is not necessary to use the destination
Identifier identifier.
Source Identifier | ulSrcld = 22 Denotes the process number of the process within the host

application and needs therefore to be supplied by the
programmer of the host application.

Table 6: Example for correct Use of Source- and Destination-related parameters.

For packets through the channel mailbox, the application uses 32 (= 0x20, Channel Token) for the
destination queue handler ulDest. The source queue handler ulSrc and the source identifier ulSrcld
are used to identify the originator of a packet. The destination identifier ulDestld can be used to
address certain resources in the protocol stack. It is not used in this example. The source queue
handler ulSrc has to be filled in. Therefore its use is mandatory; the use of ulSrcld is optional.

The netX operating system passes the request packet to the protocol stack’s AP task. The protocol
stack then builds a reply to the packet and returns it to the mailbox. The application has to make
sure that the packet finds its way back to the originator (process #22 in the example).

2.3.2.3 How to Route rcX Packets

To route an rcX packet the source identifier ulSrcld and the source queues handler ulSrc in the
packet header hold the identification of the originating process. The router saves the original
handle from ulSrcld and ulSrc. The router uses a handle of its own choices for ulSrcld and ulSrc
before it sends the packet to the receiving process. That way the router can identify the
corresponding reply packet and matches the handle from that packet with the one stored earlier.
Now the router replaces its handles with the original handles and returns the packet to the
originating process.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Fundamentals 24/390

2.3.3 Obtaining useful Information about the Communication
Channel

A communication channel represents a part of the Dual Port Memory and usually consists of the

following elements:

Output Data Image is used to transfer cyclic process data to the network (normal or high-

priority)

Input Data Image is used to transfer cyclic process data from the network (normal or high-
priority)

Send Mailbox Is used to transfer non-cyclic data to the netX

Receive Mailbox is used to transfer non-cyclic data from the netX

Control Block allows the host system to control certain channel functions

Common Status Block holds information common to all protocol stacks
Extended Status Block holds protocol specific network status information

This section describes a procedure how to obtain useful information for accessing the
communication channel(s) of your netX device and to check if it is ready for correct operation.

Proceed as follows:
1. Start with reading the channel information block within the system channel (usually starting at
address 0x0030).

2. Then you should check the hardware assembly options of your netX device. They are
located within the system information block following offset 0x0010 and stored as data type
UINT16. The following table explains the relationship between the offsets and the
corresponding xC Ports of the netX device:

0x0010 Hardware Assembly Options for xC Port[0]
0x0012 Hardware Assembly Options for xC Port[1]
0x0014 Hardware Assembly Options for xC Port[2]
0x0016 Hardware Assembly Options for xC Port[3]

Table 7: Hardware Assembly Options for different xC Ports

Check each of the hardware assembly options whether its value has been set to
RCX_HW_ASSEMBLY_ETHERNET = 0x0080. If true, this denotes that this xCPort is suitable for
running the PROFINET protocol stack. Otherwise, this port is designed for another communication
protocol. In most cases, XxC Port[2] will be used for Fieldbus systems, while xC Port[0] and xC
Port[1] are normally used for Ethernet communication.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Fundamentals 25/390

3. You can find information about the corresponding communication channel (0...3) under the
following addresses:

0x0050 Communication Channel 0
0x0060 Communication Channel 1
0x0070 Communication Channel 2
0x0080 Communication Channel 3

Table 8: Communication Channel Addresses in Dual-Port-Memory

In devices which support only one communication system which is usually the case (either a
single Fieldbus system or a single standard for Industrial-Ethernet communication), always
communication channel O will be used. In devices supporting more than one communication
system you should also check the other communication channels.

4. There you can find such information as the ID (containing channel number and port number)
of the communication channel, the size and the location of the handshake cells, the overall
number of blocks within the communication channel and the size of the channel in bytes.
Evaluate this information precisely in order to access the communication channel correctly.

The information is delivered as follows:
Size of Channel in Bytes

Address | Data Type Description

0x0050 UINT8 Channel Type = COMMUNICATION
(must have the fixed value
define RCX_CHANNEL_TYPE_COMMUNICATION = 0xO05)

0x0051 UINT8 ID (Channel Number, Port Number)
0x0052 UINT8 Size / Position Of Handshake Cells
0x0053 UINT8 Total Number Of Blocks Of This Channel
0x0054 UINT32 Size Of Channel In Bytes

0x0058 UINTS8I[8] Reserved (set to zero)

Table 9: Communication Channel-related Information

These addresses correspond to communication channel 0, for communication channels 1, 2
and 3 you have to add an offset of 0x0010, 0x0020 or 0x0030 to the address values,
respectively.

5. Finally, you can access the communication channel using the addresses you determined

previously. For more information how to do this, please refer to the netX DPM Manual,
especially section 3.2 “Communication Channel”.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Fundamentals 26/390

2.4 Packet Types

Figure 4 shows the the packet types: Request Packet, Confirmation Packet, Indication Packet and
Response Packet. Packets are used for communication between the application and the firmware.

Application netxX

o REQ

\/

IND (5]
@ /
0 \
RSP (8]

Figure 4: Packet Types

O ® The application sends request packets to the netX firmware.

© O The netX firmware sends a confirmation packet in return.

© B The application receives indication packets from the netX firmware.

@ O The application sends response packet to the netX firmware (may not be required).
REQ Request CNF Confirmation

IND Indication RSP Response

Services requested by the application: Request Packet and Confirmation Packet

The host application can send request packets to the netX firmware (transition 1 = 2) to request a
service. The netX firmware sends a confirmation packet in return, signaling success or failure
(transition 3 = 4) after processing the request.

Services indicated by the firmware to the application: Indication Packet and Response
Packet

The host application has to register to the netX firmware in order to receive indication packets
(transition 5 = 6). The application has to send a response packet to the netX firmware (transition 7
= 8).

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Fundamentals 27/390

2.4.1 Timeout for Response Packets

0 Attention:

o The PROFINET 10 Device Stack implements a timeout for some indications send to the
application. If the host does not respond to any indication within a time of 3000 ms
(default value), the stack will generate a response internally. If this occurs the host will be
informed by the Error Indication Service (see page 179) with error code
TLR_E_PNS_IF_APPLICATION_TIMEOUT in the field ulErrorCode. If this occurs while
an AR is established, no valid data may be exchanged.

The default timeout value can be changed using the Set OEM Parameters Service with
ulParamType = PNS_IF_SET_OEM_PARAMETERS_TYPE_3.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 28/390

3 Dual-Port Memory

All data in the dual-port memory is structured in blocks. According to their functions, these blocks
use different data transfer mechanisms. For example, data transfer through mailboxes uses a
synchronized handshake mechanism between host system and netX firmware. The same is true
for 10 data images, when a buffered handshake mode is configured. Other blocks, like the status
block, are read by the host application and use no synchronization mechanism.

Types of blocks in the dual-port memory are outlined below:

Mailbox transfer non-cyclic messages or packages with a header for routing
information

Data Area holds the process image for cyclic 10 data or user defined data structures

Control Block is used to signal application related state to the netX firmware

Status Block holds information regarding the current network state

Change of State collection of flags, that initiate execution of certain commands or signal a

change of state

3.1 Cyclic Data (Input/Output Data)

The input block holds the process data image received from the network whereas the output block
holds data sent to the network. Each IO block uses handshake bits for access synchronization.
Input and output data block handshake operates independently from each other. The PROFINET
Firmware supports different operation modes for process data image synchronization. The mode of
operation can be configured using the RCX_SET_ HANDSHAKE_CONFIG_REQ (see reference [5]).
The supported modes are shown in the following table.

In/Out-Handshake Mode In/Out- Description
Source
RCX_IO_MODE_BUFF_HST_CTRL |0 Buffered, host controlled, unsynchronized mode (default).

Table 10: Supported process data image synchronization modes

The behavior for the different modes is as follows:

Buffered, host controlled, unsynchronized: After the host has passed access to one of
the blocks to the netX the netX will update the input block from an internal receive buffer if
new data is available or prepare an internal send buffer using the data from output block.
Afterwards the netX immediately passes back access to the host. Therefore if the host reads
the input data slower or writes output data faster than the cyclic update time the master uses
intermediate data may be lost.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 29/390

3.11 Input Process Data

The input data block is used by Fieldbus and industrial Ethernet protocols that utilize a cyclic data
exchange mechanism. The input data image is used to receive cyclic data from the network.

The default size of the input data image is 5760 byte. However, not all available space is actually
used by the protocol stack. Depending on the specific protocol, the area actually available for user
data might be much smaller than 5760 byte. An input data block may or may not be available in the
dual-port memory. It is always available in the default memory map (see reference [3]).

Input Data Image

Offset Type Name Description

0x2680 UINT8 abPdOInput[5760] Input Data Image
Cyclic Data From The Network

Table 11: Input Data Image

3.1.2 Output Process Data

The output data block is used by Fieldbus and industrial Ethernet protocols that utilize a cyclic data
exchange mechanism. The output data Image is used to send cyclic data from the host to the
network.

The default size of the output data image is 5760 byte. However, not all available space is actually
used by the protocol stack. Depending on the specific protocol, the area actually available for user
data might be much smaller than 5760 byte. An output data block may or may not be available in
the dual-port memory. It is always available in the default memory map (see reference [3]).

Output Data Image

Offset Type Name Description

0x1000 UINT8 abPdOOutput[5760] Output Data Image
Cyclic Data To The Network

Table 12: Output Data Image

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 30/390

3.2 Acyclic Data (Mailboxes)

The mailbox of each communication channel has two areas that are used for non-cyclic message
transfer.

Send Mailbox Packet transfer from host system to firmware

Receive Mailbox Packet transfer from firmware to host system

The send and receive mailbox areas are used by field bus protocols providing a non-cyclic data
exchange mechanism. Another use of the mailbox system is to allow access to the firmware
running on the netX chip itself for diagnostic and identification purposes. The send mailbox is used
to transfer acyclic data to the network or to the firmware. The receive mailbox is used to transfer
acyclic data from the network or from the firmware.

A send/receive mailbox may or may not be available in the communication channel. It depends on
the function of the firmware whether or not a mailbox is needed. The location of the system
mailbox and the channel mailbox is described in the netX DPM Interface Manual.

Note: Each mailbox can hold one packet at a time. The netX firmware stores packets
that are not retrieved by the host application in a packet queue. This queue has
limited space and may fill up so new packets maybe lost. To avoid these data
loss situations, it is strongly recommended to empty the mailbox frequently,
even if packets are not expected by the host application. Unexpected command
packets should be returned to the sender with an Unknown Command in the
status field; unexpected reply messages can be discarded.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 31/390
3.2.1 General Structure of Messages or Packets for Non-Cyclic Data

Exchange
The non-cyclic packets through the netX mailbox have the following structure:
Structure Information Type
Variable Type Value / Range | Description
Structure Information
ulDest UINT32 Destination Queue Handle
ulSrc UINT32 Source Queue Handle
ulDestld UINT32 Destination Queue Reference
ulSrcld UINT32 Source Queue Reference
ulLen UINT32 Packet Data Length (In Bytes)
ulld UINT32 Packet Identification As Unique Number
ulSta UINT32 Status / Error Code
ulCmd UINT32 Command / Response
ulExt UINT32 Reserved
ulRout UINT32 Routing Information
Structure Information
User Data
Specific To The Command

Table 13: General Structure of Packets for non-cyclic Data Exchange.

Some of the fields are mandatory; some are conditional; others are optional. However, the Head
area of packet must always exist. Depending on the command, a packet may or may not have the
data Area. If present, the content of the data field is specific to the command, respectively to the
reply.

Destination Queue Handle

The ulDest field identifies a task queue in the context of the netX firmware. The task queue
represents the final receiver of the packet and is assigned to a protocol stack. The ulDest field has
to be filled out in any case. Otherwise, the netX operating system cannot route the packet. This
field is mandatory.

Source Queue Handle

The ulSrc field identifies the sender of the packet. In the context of the netX firmware (inter-task
communication) this field holds the identifier of the sending task. Usually, a driver uses this field for
its own handle, but it can hold any handle of the sending process. Using this field is mandatory.
The receiving task does not evaluate this field and passes it back unchanged to the originator of
the packet.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 32/390

Destination Identifier

The ulDestld field identifies the destination of an unsolicited packet from the netX firmware to the
host system. It can hold any handle that helps to identify the receiver. Therefore, its use is
mandatory for unsolicited packets. The receiver of unsolicited packets has to register for this.

Source ldentifier

The ulSrcld field identifies the originator of a packet. This field is used by a host application, which
passes a packet from an external process to an internal netX task. The ulSrcld field holds the
handle of the external process. When netX operating system returns the packet, the application
can identify the packet and returns it to the originating process. The receiving task on the netX
does not evaluate this field and passes it back unchanged. For inter-task communication, this field
is not used.

Length of Data Field

The ulLen field holds the size of the data field in bytes. It defines the total size of the packet’s
payload that follows the packet’'s header. The size of the header is not included in ulLen. So the
total size of a packet is the size from ulLen plus the size of packet's header. Depending on the
command, a data field may or may not be present in a packet. If no data field is included, the
length field is set to zero.

Identifier

The ulld field is used to identify a specific packet among others of the same kind. That way the
application or driver can match a specific reply or confirmation packet to a previous request packet.
The receiving task does not change this field and passes it back to the originator of the packet. Its
use is optional in most of the cases. But it is mandatory for sequenced packets. Example:
Downloading big amounts of data that does not fit into a single packet. For a sequence of packets
the identifier field is incremented by one for every new packet.

Status / Error Code

The ulState field is used in response or confirmation packets. It informs the originator of the packet
about success or failure of the execution of the command. The field may be also used to hold
status information in a request packet.

Command / Response

The ulCmd field holds the command code or the response code, respectively. The
command/response is specific to the receiving task. If a task is not able to execute certain
commands, it will return the packet with an error indication. A command is always even (the least
significant bit is zero). In the response packet, the command code is incremented by one indicating
a confirmation to the request packet.

Extension

The extension field ulExt is used for controlling packets that are sent in a sequenced manner. The
extension field indicates the first, last or a packet of a sequence. If sequencing is not required, the
extension field is not used and set to zero.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 33/390

Routing Information

The ulRout field is used internally by the netX firmware only. It has no meaning to a driver type
application and therefore set to zero.

User Data Field

This field contains data related to the command specified in ulCmd field. Depending on the
command, a packet may or may not have a data field. The length of the data field is given in the
ulLen field.

3.2.2 Status and Error Codes

The following status and error codes can be returned in ulState List of error codes see reference
[3] or section Status/Error Codes Overview on page 342.

3.2.3 Differences between System and Channel Mailboxes

The mailbox system on netX provides a non-cyclic data transfer channel for field bus and industrial
Ethernet protocols. Another use of the mailbox is allowing access to the firmware running on the
netX chip itself for diagnostic purposes. There is always a send and a receive mailbox. Send and
receive mailboxes utilize handshake bits to synchronize these data or diagnostic packages through
the mailbox. There is a pair of handshake bits for both the send and receive mailbox.

The netX operating system rcX only uses the system mailbox. The system mailbox, however, has
a mechanism to route packets to a communication channel. A channel mailbox passes packets to
its own protocol stack only.

3.24 Send Mailbox

The send mailbox area is used by protocols utilizing a non-cyclic data exchange mechanism.
Another use of the mailbox system is to provide access to the firmware running on the netX chip
itself. The send mailbox is used to transfer non-cyclic data to the network or to the protocol stack.

The size is 1596 bytes for the send mailbox in the default memory layout. The mailbox is
accompanied by counters that hold the number of packages that can be accepted.

3.25 Receive Mailbox

The receive mailbox area is used by protocols utilizing a non-cyclic data exchange mechanism.
Another use of the mailbox system is to provide access to the firmware running on the netX chip
itself. The receive mailbox is used to transfer non-cyclic data from the network or from the
protocol stack.

The size is 1596 bytes for the receive mailbox in the default memory layout. The mailbox is
accompanied by counters that hold the number of waiting packages (for the receive mailbox).

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory

34/390

3.2.6 Channel Mailboxes (Details of Send and Receive Mailboxes)

Master Status

Offset Type Name

Description

0x0200 UINT16 usPackagesAccepted

Packages Accepted

Number of Packages that can
be Accepted

0x0202 UINT16 usReserved

Reserved
Setto 0

0x0204 UINT8 abSendMbx[1596]

Send Mailbox

Non Cyclic Data To The
Network or to the Protocol
Stack

0x0840 UINT16 usWaitingPackages

Packages waiting

Counter of packages that are
waiting to be processed

0x0842 UINT16 usReserved

Reserved
Setto 0

0x0844 UINT8 abRecvMbx[1596]

Receive Mailbox

Non Cyclic Data from the
network or from the

protocol stack

Table 14: Channel Mailboxes

Channel Mailboxes Structure
typedef struct tagNETX_SEND MAILBOX_ BLOCK

UINT16 usPackagesAccepted;

UINT16 usReserved;

UINT8 abSendMbx[1596];

} NETX_SEND_MAILBOX_ BLOCK;

typedef struct tagNETX_ RECV_MAILBOX_ BLOCK

UINT16 usWaitingPackages;
UINT16 usReserved;

UINT8 abRecvMbx[1596];
} NETX_RECV_MAILBOX_ BLOCK;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Dual-Port Memory 35/390

3.2.7 Packet fragmentation

In some cases a large amout of data needs to be transferred between the stack and the host that
does not fit into the mailbox. In this case, fragmented packet transfer is used: The data part of the
affected packet is splitted into smaller fragments. Each fragment fits (including the packet header)
into the mailbox. These fragments are transferred fragment by fragment through the mailbox.
These fragments have to be reassembled to one “piece”.
Typically, the data length of the reassembled packet in a fragmented transfer is unknown in
advance. Please refer to the used service description for details about the length.
A fragmented packet transfer is managed using the packet header fields ulExt, ulld, ulCmd and
ulSta. The remaining packet header fields should be used as usual and require no special
treatment. The following definitions apply to these fields:
Two bits of the ulExt field are used to initiate and control the fragmented transfer. The
affected bits are covered by the bitmask definition TLR_PACKET_SEQ_MASK. The
remaining bits shall be handled by the host as usual.

Definition Value Description
TLR_PACKET_SEQ_MASK 0x000000C0 | Bitmask defining the relevant bits of ulExt for packet
fragmentation

TLR_PACKET_SEQ_NONE 0x00000000 | The packet shall be transferred without fragmentation
TLR_PACKET_SEQ_FIRST 0x00000080 | The first fragment of a fragmented transfer
TLR_PACKET_SEQ_MIDDLE | 0x000000C0O | A middle fragment of a fragmented transfer
TLR_PACKET_SEQ_LAST 0x00000040 | The last fragment of a fragmented transfer
Table 15: Packet Header ulExt field for fragmented transfers

ulld is used for verification of the sequence and is incremented by the initiator of the transfer
for each sent packet associated with the transfer. The fragment acknowledge, response or
confirmation must contain the same id as the corresponding fragment indication or request.

ulCmd is used to distinguish indication or request packets from response or confirmation
packets.

ulSta can be used to abort a fragmented packet transfer from host or stack. For this purpose
ulSta should be set to a non-zero value.
The first step in a fragmented transfer is to split the data into smaller parts that fit into the mailbox.
In order to minimize the number of fragmented requests it is recommended to make the fragments
filling the complete mailbox. Thus the typical fragment length will be 1556 bytes data + 40 bytes
header. This procedure is shown in Figure 5.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 36/390

ulDest
ulDest ulSre
ulsre ulDestid
ulDestld ulSrcld
ulSrcld ulLen 1556
ulLen 4000 ulld 0]
ulld D ulsta]
ulSta] ulCmd CMD
ulcmd CMD ulExt FIRST ulDest
ulExt ulRout ulsre
ulRout ulDestld
ulsreld
ulLen 1556
ulld ID+1
ulsta 0
ulcmd CMD
uIExt MID ulDest
ulRout ulSre
_________ ulDestld
ulSreld
ulLen 88
ulld ID+2
ulsta 0
ulCmd CMD
ulExt LAST
_________ ulRout

Figure 5: Splitting a large packet into fragments (figure shows 3 fragments)

After that step the data is transferred through the mailbox of the DPM by sending one fragment
after another. Each fragment must be acknowledged from the receiver before the next fragment
can be sent. The acknowledge packet contains the packet header only.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 37/390

The sequence of a fragmented response/confirmation is show in Figure 6.

1.

The stack starts the fragmented transfer by sending the first fragment to the host with the
packet header field ulExt & TLR_PACKET_SEQ_MASK set to a hon-zero value.

Attention:

The stack starts a fragmented transfer using TLR_PACKET_SEQ_FIRST. Observe that, if
the stack uses TLR_PACKET_SEQ_LAST the stack starts the fragmentation sequence,
but only one fragment is required by the stack. The stack ‘expects’ that the host requires
a fragmentation sequence to respond. The host has to use at least
TLR_PACKET_SEQ_LAST.

Until the stack issues the last fragment indicated by TLR_PACKET_SEQ _ LAST, the host
receives the fragment and acknowledges it using a packet without data part. ulld and ulExt
must be identical to the fragments header values.

After the stack has sent the last fragment indicated by TLR_PACKET_SEQ_LAST, the host
has not to sent an acknowledge. Instead the host processes the reassembled indication
packet from the stack and creates the response content.

Now the host transfers the response packet to the stack. For this, the host might also use
fragmentation. The host initiates the response transfer by sending the first response
fragment to the stack.

As long as the response fragment does not use TLR_PACKET_SEQ_LAST, the stack will
expect additional response fragments. Thus it will generate a fragment acknowledge using
the indication command code and mirrored ulExt field. The host can now send the next
fragment of the response using the ulld value from the acknowledge.

On the last fragment of the response, the host has to use TLR_PACKET_SEQ_LAST. The
stack will not send another fragment acknowledge and the transfer is complete.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 38/390

Fragmented Indication & Response Sequence

netx
| Host

: II Indication ll'

opt) [n=1]

rulCmd, ullen >= 0, ulld +0, | — —
' WIExt & TLR PACKET SEQ FIRST ! ‘ netX initiates fragmented indication/response Iﬁ

Initialize local buffer
Append fragment data to local buffer

3:23‘2' aTIJERgEBn = 0. ulld = MIRROR, ‘ Host generates a fragment acknowledge H
loo [for fragmenti=1..n-2]

ulCmd, ullen = 0, ulld +1,
ulExt & TLR_PACKET_SEQ_MIDDLE

Append fragment data to local buffer

E:E::d:l aTéRgEen =0, ulld = MIRROR, ‘ Host generates a fragment acknowledge 5

E:Egd&l“rlt;n;,fcig(‘jr+sr|]§@1 ILAST | ‘ netX generates final indication fragment %

Append fragment data to local buffer

Process reassembled Indication from local buffer

: Response :

opt [m>1]

! ulCmd | 0x1, ullen >0, ulld +n- 1, ‘H {initiates ted I}1
i _ ulExt & TLR_PACKET SEQ_FIRST ost intiates fragmented rasponse

ulCmd, ulLen=0, ulld +n- 1,
ulExt = MIRROR

‘ netX generates fragment acknowledge H

loop / [for fragmenti=1.m-2]

! ulCmd, ullen =0, ulld +n-1 +1,
i _ ulExt & TLR_PACKET SEQ MIDDLE

ulCmd | 0x1, ulLen =0, ulld = MIRRCR,

Append fragment data to local buffer \
ulExt = MIRROR |

‘ netX generates a fragment acknowledge H

ulCmd | 0x1 ullen ==0, ulld +n+m-2,
ulExt & TLR_PACKET SEQ _LAST

1
:‘ Host generates final response fragment H

netx Host

n : Number of Indication Fragments
m Mumber of Response Fragments
MIRROR: Copy Value from Indication/Canfirmation

Figure 6: Sequence of fragmented indication and response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 39/390

3.3 Status

A status block is present within the communication channel. It contains information about network
and task related issues. In some respects, status and control block are used together in order to
exchange information between host application and netX firmware. The application reads a status
block whereas the control block is written by the application. Both status and control block have
registers that use the Change of State mechanism (see also section 2.2.1 of reference [3]).

3.3.1 Common Status

The Common Status Block contains information that is the same for all communication channels.
The start offset of this block depends on the size and location of the preceding blocks. The status
block is always present in the dual-port memory.

3.3.11 All Implementations

The structure outlined below is common to all protocol stacks.
Common Status Structure Definition

Common Status
Offset Type Name Description
0x0010 UINT32 ulCommunicationCOS Communication Change of State
READY, RUN, RESET REQUIRED, NEW, CONFIG
AVAILABLE, CONFIG LOCKED
0x0014 UINT32 ulCommunicationState | Communication State
NOT CONFIGURED, STOP, IDLE, OPERATE
0x0018 UINT32 ulCommunicationError | Communication Error
Unique Error Number According to Protocol Stack
0x001C UINT16 usVersion Version
Version Number of this Diagnosis Structure
Ox001E UINT16 usWatchdogTime Watchdog Timeout
Configured Watchdog Time
0x0020 UINTS8 bPDInHskMode Input area handshake mode.
0x0021 UINT8 bPDINnSource Input Area Handshake source.
0x0022 UINT8 bPDOutHskMode Output area handshake mode.
0x0023 UINTS8 bPDOutSource Output Area Handshake source.
0x0024 UINT32 ulHostWatchdog Host Watchdog
Joint Supervision Mechanism
Protocol Stack Writes, Host System Reads
0x0028 UINT32 ulErrorCount Error Count
Total Number of Detected Error Since Power-Up or
Reset
0x002C UINT8 bErrorLogind Counter of available Log Entries,
0x002D UINT8 bErrorPDINCnt Counter of input area handshake handling errors
0x002E UINT8 bErrorPDOuUtCnt Counter of output area handshake handling errors
0x002F UINT8 bErrorSyncCnt Counter of synchronization handshake handling errors
0x0030 UINT8 bSyncHskMode Synchronization handshake mode.
0x0031 UINT8 bSyncSource Synchronization handshake source.
0x0032 UINT16 ausReserved[3] Reserved

Table 16: Common Status Structure Definition

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Dual-Port Memory

40/390

Common Status Block Structure Reference
typedef struct NETX_COMMON_STATUS BLOCK Ttag

{

uint32_t
uint32_t
uint32_t
uintle_t
uintlé_t
uint8_t
uint8_t
uint8_t
uint8_t
uint32_t
uint32_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uintlé_t

ulCommunicationCOS;
ulCommunicationState;
ulCommunicationError;
usVersion;
usWatchdogTime;
bPDInHskMode;
bPDInSource;
bPDOutHskMode ;
bPDOutSource;
ulHostWatchdog;
ulErrorCount;
bErrorLogind;
bErrorPDINCnt;
bErrorPDOutCnt;
bErrorSyncCnt;
bSyncHskMode ;
bSyncSource;
ausReserved[3];

NETX_MASTER_STATUS tMasterStatusBlock;

uint32_t

} NETX_COMMON_STATUS_BLOCK_T;

aulReserved[6];
} __ RCX_PACKED_POST uStackDepended;

Communication Change of State (All Implementations)

The communication change of state register contains information about the current operating
status of the communication channel and its firmware. Every time the status changes, the netX
protocol stack toggles the netX Change of State Command flag in the netX communication flags
register (see section 3.2.2.1 of reference [3]). The application then has to toggle the netX Change
of State Acknowledge flag back acknowledging the new state (see section 3.2.2.2 of reference [3]).

ulCommunicationCOS — netX writes, Host reads

Bit Short name Name

D31..D7 unused, set to zero

D6 Restart Required Enable RCX_COMM_COS_RESTART_REQUIRED_ENABLE
D5 Restart Required RCX_COMM_COS_RESTART_REQUIRED

D4 Configuration New RCX_COMM_COS_CONFIG_NEW

D3 Configuration Locked RCX_COMM_COS_CONFIG_LOCKED

D2 Bus On RCX_COMM_COS_BUS_ON

D1 Running RCX_COMM_COS_RUN

DO Ready RCX_COMM_COS_READY

Table 17: Communication State of Change

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory

Communication Change of State Flags (netX System = Application)

Bit Definition / Description

0 Ready (RCX_COMM_COS_READY)
0-...
1 - The Ready flag is set as soon as the protocol stack is started properly. Then the protocol
stack is awaiting a configuration. As soon as the protocol stack is configured properly, the
Running flag is set, too.

1 Running (RCX_COMM_COS_RUN)
0-...
1 -The Running flag is set when the protocol stack has been configured properly. Then the
protocol stack is awaiting a network connection. Now both the Ready flag and the Running
flag are set.

2 Bus On (RCX_COMM_COS_BUS_ON)
0-..
1 -The Bus On flag is set to indicate to the host system whether or not the protocol stack has
the permission to open network connections. If set, the protocol stack has the permission to
communicate on the network; if cleared, the permission was denied and the protocol stack will
not open network connections.

3 Configuration Locked (RCX_COMM_COS_CONFIG_LOCKED)
0-..
1 —The Configuration Locked flag is set, if the communication channel firmware has locked the
configuration database against being overwritten. Re-initializing the channel is not allowed in
this state. To unlock the database, the application has to clear the Lock Configuration flag in
the control block (see page 45).

4 Configuration New (RCX_COMM_COS_CONFIG_NEW)
0-..
1 -The Configuration New flag is set by the protocol stack to indicate that a new configuration
became available, which has not been activated. This flag may be set together with the
Restart Required flag.

5 Restart Required (RCX_COMM_COS_RESTART_REQUIRED)
0-...
1 -The Restart Required flag is set when the channel firmware requests to be restarted. This
flag is used together with the Restart Required Enable flag below. Restarting the channel
firmware may become necessary, if a new configuration was downloaded from the host
application or if a configuration upload via the network took place.

6 Restart Required Enable (RCX_COMM_COS_RESTART_REQUIRED_ENABLE)
0-..
1 — The Restart Required Enable flag is used together with the Restart Required flag above. If
set, this flag enables the execution of the Restart Required command in the netX firmware (for
details on the Enable mechanism see section 2.3.2 of the netX DPM Interface Manual)).

7..31 Reserved, setto 0

Table 18: Meaning of Communication Change of State Flags

Communication State (All Implementations)

41/390

The communication state field contains information regarding the current network status of the
communication channel. Depending on the implementation, all or a subset of the definitions below

is supported.

Communication State Define Value

UNKNOWN RCX_COMM_STATE_UNKNOWN 0x00000000

NOT_CONFIGURED RCX_COMM_STATE_NOT_CONFIG | 0x00000001
URED

STOP RCX_COMM_STATE_STOP 0x00000002

IDLE RCX_COMM_STATE_IDLE 0x00000003

OPERATE RCX_COMM_STATE_OPERATE 0x00000004

Communication Channel Error (All Implementations)

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Dual-Port Memory 42/390

This field holds the current error code of the communication channel. If the cause of error is
resolved, the communication error field is set to zero (= RCX_SYS_SUCCESS) again. Not all of the
error codes are supported in every implementation. Protocol stacks may use a subset of the error

codes below.

No Failure Define Value
SUCCESS RCX_SYS_SUCCESS 0x00000000
Runtime Failures
Runtime Failures Define Value
WATCHDOG TIMEOUT RCX_E_WATCHDOG_TIMEOUT 0xC0000101
Initialization Failures
Initialization Failures Define Value
INITIALIZATION FAULT RCX_E_INIT_FAULT 0xC0000100
DATABASE ACCESS FAILED RCX_E_DATABASE_ACCESS_FAILED 0xC0000101
Configuration Failures
Configuration Failures Define Value
NOT CONFIGURED RCX_E_NOT_CONFIGURED 0xC0000119
CONFIGURATION FAULT RCX_E_CONFIGURATION_FAULT 0xC0000120
INCONSISTENT DATA SET RCX_E_INCONSISTENT_DATA_SET 0xC0000121
DATA SET MISMATCH RCX_E_DATA_SET_MISMATCH 0xC0000122
INSUFFICIENT LICENSE RCX_E_INSUFFICIENT_LICENSE 0xC0000123
PARAMETER ERROR RCX_E_PARAMETER_ERROR 0xC0000124
INVALID NETWORK ADDRESS RCX_E_INVALID_NETWORK_ADDRESS 0xC0000125
NO SECURITY MEMORY RCX_E_NO_SECURITY_MEMORY 0xC0000126
Network Failures
Network Failures Define Value
NETWORK FAULT RCX_COMM_NETWORK_FAULT 0xC0000140
CONNECTION CLOSED RCX_COMM_CONNECTION_CLOSED 0xC0000141
CONNECTION TIMED OUT RCX_COMM_CONNECTION_TIMEOUT 0xC0000142
LONELY NETWORK RCX_COMM_LONELY_NETWORK 0xC0000143
DUPLICATE NODE RCX_COMM_DUPLICATE_NODE 0xC0000144
CABLE DISCONNECT RCX_COMM_CABLE_DISCONNECT 0xC0000145

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 43/390

Version (All Implementations)

The version field holds version of this structure. It starts with one; zero is not defined.
STRUCTURE VERSION #define RCX_STATUS BLOCK_VERSION 0x0001

Watchdog Timeout (All Implementations)

This field holds the configured watchdog timeout value in milliseconds. The application may set its
watchdog trigger interval accordingly. If the application fails to copy the value from the host
watchdog location to the device watchdog location, the protocol stack will interrupt all network
connections immediately regardless of their current state. For details, see section 4.13 of reference

3].

Host Watchdog (All Implementations)

The protocol stack supervises the host system using the watchdog function. If the application fails
to copy the value from the device watchdog location (section 3.2.5 of the netX DPM Interface
Manual) to the host watchdog location (section 3.2.4 of the netX DPM Interface Manual), the
protocol stack assumes that the host system has some sort of problem and shuts down all network
connections. For details on the watchdog function, refer to section 4.13 of the netX DPM Interface
Manual.

Error Count (All Implementations)

This field holds the total number of errors detected since power-up, respectively after reset. The
protocol stack counts all sorts of errors in this field no matter if they were network related or caused
internally.

Error Log Indicator (All Implementations)

Not supported yet: The error log indicator field holds the number of entries in the internal error log.
If all entries are read from the log, the field is set to zero.

3.3.1.2 Master Implementation

In addition to the common status block as outlined in the previous section, a master firmware
maintains the additional structures for the administration of all slaves which are connected to the
master. These are not discussed here as they are not relevant for the slave.

3.3.1.3 Slave Implementation

The slave firmware uses only the common structure as outlined in section 3.2.5.1. of the netX DPM
Interface Manual. This is true for all protocol stacks.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 44/390

3.3.2 Extended Status

The content of the channel specific extended status block is specific to the implementation.
Depending on the protocol, a status area may or may not be present in the dual-port memory. It is
always available in the default memory map (see section 3.2.1 of reference [3]).

Note: Have in mind, that all offsets mentioned in this section are relative to the beginning of
the common status block, as the start offset of this block depends on the size and
location of the preceding blocks.

Typedef struct NETX_EXTENDED_STATUS_BLOCK_Ttag

{
UINT8 abExtendedStatus[432];
3} NETX_EXTENDED_STATUS_BLOCK_T

For the PROFINET 10 Device protocol stack V3 implementation, the extended status area is
currently not used.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Dual-Port Memory 45/390
3.4 Control Block

A control block is always present in both system and communication channel. In some respects,
control and status block are used together in order to exchange information between host
application and netX firmware. The control block is written by the application, whereas the
application reads a status block. Both control and status block have registers that use the Change
of State mechanism (see section 2.2.1 of reference [3]).

The following gives an example of the use of control and status block. The host application wishes
to lock the configuration settings of a communication channel to protect them against changes. The
application sets the Lock Configuration flag in the control block to the communication channel
firmware. As a result, the channel firmware sets the Configuration Locked flag in the status block
(see below), indicating that the current configuration settings cannot be deleted, altered,
overwritten or otherwise changed.

The control block of a dual-port memory features a watchdog function to allow the operating
system running on the netX supervise the host application and vice versa. The control area is
always present in the dual-port memory.

Control Block

Offset Type Name Description

0x0008 UINT32 ulApplicationCOS Application Change Of State
State Of The Application
Program

INITIALIZATION, LOCK
CONFIGURATION

0x000C UINT32 ulDeviceWatchdog Device Watchdog

Host System Writes, Protocol
Stack Reads

Table 19: Communication Control Block

Communication Control Block Structure
typedef struct NETX_CONTROL_BLOCK_Ttag

{

UINT32 ulApplicationCOS;
UINT32 ulDeviceWatchdog;
} NETX_CONTROL_BLOCK_T;

For more information concerning the Control Block please refer to the netX DPM Interface Manual.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Getting Started 46/390

4 Getting Started

This chapter describes the getting started with PROFINET device Stack. This chapter offers
background information and explains essential functionality of a PROFINET 10 Device. For
additional information, PROFIBUS International offers a document with recommendations for
design and implementation, see reference [8].

4.1 Structure of the PROFINET Device Stack

The figure below shows the internal structure of the tasks which together represent the PROFINET
IO Device Stack V3.12.0:

System Area Handshake Area Channel Area
HC MBX MBX
D P M MBX | MBX Channel Out In
Out In HC Out In

netX

——

P

nw @

=~ X

N O =Z

| %8
38
g 3

Sw 3

X2
Qg

>

o

—

%

=

.

\
)
=2
)
>
©
O
)
_|
Q
(%]
2

<l

-

Callback

PNS IF Task functions

|
I
|
|
|
|
} for cyclic 10
|
|
|
|
|

y ‘ RPC Task K:j i
rX- ! |
(—) System SNMP Server | | CMDEV Task |

) == | |
Function Interface SNMP MlB ‘ i
— i — T |

Packet Interface TCP/| P LLDP —
Task i PROFINET IO RTA Task RTC Task
Other kind of | RT/IRT
relation L79§11c9§t3c1< 777 g
xC v v

PROFINET switch

Figure 7: Task Structure of the PROFINET IO Device Stack

In this scenario, the dual-port memory is used for exchange of information, data and packets. Here,
the PNS AP DPM Task takes care of mapping the PROFINET Device Stack API to the Dual-Port-
Memory.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Getting Started 47/390

In general, the AP-Task (User application or Dual-Port-Memory Task) only interfaces to the highest
layer task, namely the PNS_IF task, which represents the application interface of the PROFINET
Device stack.

The RTA task, RTC task and the CMDEYV task form the core of the PROFINET Device Stack.

The RPC task is required to perform the RPC calls required by PROFINET specification. As
transport, the connectionless DCE-RPC protocol is used

The SNMP server task and the SNMP MIB task are handling the SNMP requests used for
network diagnosis and topology detection.

The LLDP task provides the implementation of the LLDP protocol use for neighborhood
detection.

The TCP/IP task provides TCP and UDP services

Handling of Ethernet frames is used by the RTA Task, RTC Task, LLDP Task and the TCP/IP
Task. This functionality is provides by the xC Switch codes in conjunction with an rcX Ethernet
Driver API. In detail, the various tasks have the following functionality and responsibilities:

RTA task

The RTA task provides the following functionality:
Processing of all PROFINET acyclic real-time telegrams. (PROFINET Alarm services)
Processing of DCP telegrams
Handling of Link Status Changes.

The following PN 10 state machines are implemented by this task: APMS, APMR, ALPMR,
ALPMI, DCPHMCS, DCPMCR, DCPUCS and DCPUCR.

RTC task

The RTC task provides the following functionality:
Processing of all ROFINET cyclic real-time telegrams. (PROFINET Cyclic services)
Mapping of 1/O-Data between application and telegrams

The following PN 10 state machines are implemented by this task: CPM and PPM.

CMDEV task

The CMDEYV task provides the following functionality:
PROFINET AR Management (Connection Handling, Alarm Generation, Ownership Handling)
Handling of AR related parameter records.
Controlling of TCP/IP-, SNMP-, RPC-, RTA- and RTC-Task

The following PN 10 state machines are implemented by this task: CMDEV, CMDEV-DA, CMINA,
CMRPC, CMSM, CMSU, CMWRR, OWNSM, PLUGSM, PULLSM and RSMSM.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Getting Started 48/390

xC PROFINET-Switch + rcX Ethernet Driver
The xC PROFINET-Switch and the associated rcX Ethernet Driver provides the following
functionality:

Standard Ethernet 2-Port Switch functionality. (Local Send & Receive of frames. Forwarding
of Frames between ports)

Ethernet PHY Handling (LinkUp/Down/State)
Handling of protocols like PTCP and MRP

This part provides the LMPM according to the PROFINET 10 specification. Additionally, the
following PN 10 state machines are implemented by the associated Ethernet Driver:

PTCP Delay Requestor,
PTCP Delay Responder,
MRP Client.

RPC task

The RPC task is required for connection-less RPC used by PROFINET for acyclic services. It
provides the following functionality:
Connectionless RPC Client and RPC Server. (Using UDP Protocol)

RPC Endpoint Mapper Services

LLDP task

The LLDP task implements the LLDP protocol and the LLDP MIB Database according to the
PROFINET 10 and LLDP specification.

SNMP tasks

The SNMP Server and MIB tasks implement the SNMP protocol and the MIB (Management
Information Base).

PNS_IF task

The PNS_IF task provides the following functionality:
Interface between protocol stack an AP-Task
Handling of Physical Device Parameters
Diagnosis processing
Handling of most PROFINET Read/Write Records
Checking submodule 10-offsets for overlapping
Handling I&M data (if stack shall handle it)
Handling PROFINET Logbook

PNS AP DPM task

This task implements the Dual-Port-Memory interface of the PROFINET Device Stack. It
furthermore implements the functionality to evaluate SYCON.net configuration databases.

TCP/IP task
The TCP/IP task provides TCP and UDP services.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Getting Started 49/390

4.2 Naming Conventions

PROFINET and the netX use different naming schemes in certain cases. To avoid problems with
that this section shall clarify the naming conventions:

PROFINET netX DPM/SHM PROFINET Device Stack Description
Inputs (Data) Shall be written to the Provider Image / Provider Data of Input Submodules.
Output Area Data Send from the Device to the
Controller
Outputs (Data) Shall be read from the Consumer Image / Data of Output Submodules.
Input Area Consumer Data Send from the Controller to
the Device

Table 20: Naming convention of Input/Output Data

4.3 Overview about Essential Functionality

You can find the most commonly used functionality of the PROFINET 10 RT/IRT Device Protocol
API within the following sections of this document:

Topic Section No. Section Name
Configuration of 6.1.5.1 Set Configuration Request
the stack

Acyclic data 6.3.1.1 Read Record Indication
transfer (Read

Indication)

Acyclic data 6.3.2.1 Write Record Indication
transfer (Write

Indication)

Register 6.1.6.1 Register Application Service
Application

Save IP 6.3.5.1 Save IP Address Indication
Check Indication 6.2.2.1 Check Indication

AR InData 6.2.6.1 AR InData Indication
Indication

Error Indication 6.3.13.1 Error Indication

Get Diagnosis 6.4.1 Get Diagnosis Service
Diagnostic Alarm | 6.4.4.1 Diagnosis Alarm Request
Process Alarm 6.4.3.1 Process Alarm Request

Table 21: Overview about essential Functionality

For more information how to configure and setup the protocol stack, see chapter Packet Interface

Configuring the 10-Device Stack, and especially section Configuring the PROFINET 10 Device
Stack on page 65 might be very useful.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Getting Started 50/390

4.4 Event Mechanism

The PROFINET Device stack uses an event mechanism to indicate some import events to the
application. If the stack is accessed using Dual-Port-Memory or Shared Memory API, the Events
will be indicated using the Event Indication Service describe on page 202. If the Callback Interface
is used to access the I/O-Data, the events are indicated using the event callback function.

The following events are currently defined:

Event Number Meaning

0x00000000 PNS_IF_I0_EVENT_RESERVED: Reserved

0x00000001 PNS_IF_IO_EVENT_NEW_FRAME: This event shall not be used anymore
and will be generated for compatibility only

0x00000002 PNS_IF_I0_EVENT_CONSUMER_UPDATE_REQUIRED: The Data within the

consumer image shall be updated because it may not be valid any longer. This
occurs for example when the connection is lost.

0x00000003 PNS_IF_IO_EVENT_PROVIDER_UPDATE_REQUIRED: The stack needs
access to the provider data. This happens for example if an application ready
has to be send and the stack needs to refresh the cyclic data before.

0x00000004 PNS_IF_IO_EVENT_FRAME_SENT: This event shall not be used anymore
and will be generated for compatibility only.
0x00000005 PNS_IF_IO_EVENT_CONSUMER_UPDATE_DONE: The stack finished

updating the consumer data image. The user application shall read the data
now. This event has no meaning for DPM/SHM because the standard
Handshake mechanism is used here.

0x00000006 PNS_IF_IO_EVENT_PROVIDER_UPDATE_DONE: The stack finished updating
the frames from provider data image. The user application may write new data
now. This event has no meaning for DPM/SHM because the standard
Handshake mechanism is used here.

Table 22 PROFINET Device Stack Events

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Getting Started 51/390

45 Device Handle

The PROFINET Device Stack supports handling multiple ARs at the same time. This means, that
for instance Parameter Writes, Parameter Reads, Connect Sequences and Abort Sequence may
occur at the same time. In order to distinguish between the different ARs, the stack provides the
attribute hDeviceHandle in all affected packets. The device handle may hold the following

values:

hDeviceHandle = O: The request is associated with no AR (Only Readimplicit) or the
request is associated with a Supervisor DA AR.

hDeviceHandle != 0O: The request is associated with a Supervisor AR or an 10-AR. The
Type of the AR is indicated to the application using the AR Check Service.

As a consequence, the application must be able to handle multiple instances of the following
indications at the same time:

AR Check Indication

Connect Request Done Indication
Parameter End Indication

AR InData Indication

Read Record Indication

Write Record Indication

AR Abort Indication Indication
APDU Status Changed Indication
Alarm Indication

Release Request Indication

Read I&M Indication

Write &M Indication
Parameterization Speedup Support Indication

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Exchanging Cyclic Data 52/390

5 Exchanging Cyclic Data

This section describes how the user application can access the cyclic |0-data which is exchanged
with the PROFINET Controller. The PROFINET Device stack provides different ways to exchange
this data. Depending on the user’s application only one of these methods may be used:

If the netX chip is used as dedicated communication processor while the user’'s application
runs on a separate host processor of its own, I/O-Data can be accessed using the
mechanism described in the Dual Port Memory Interface manual only. This is always the
case if the stack is used as loadable firmware.

If the user application is running on the netX chip together with the PROFINET IO-Device
stack there are two possibilities to access the cyclic I/O-Data:

If the Shared Memory Interface is used, the user application has to access the I/O-Data
using the shared memory interface API. As this is basically an emulation of the Dual
Port Memory Interface for applications running locally on the netX chip, the interface is
similar to using the netX as dedicated communication processor.

If the user application is not using the shared memory interface, the I/O-Data is
accessed using a function call API. This approach removes any overhead from the
Shared Memory Interface.

5.1 General Concepts

PROFINET uses the concept of a cyclic process data image. Each master or slave of a PROFINET
network has an image of input and output data. This image is updated from communication partner
images using periodic Ethernet telegrams. These frames are sent at intervals configured by the
engineering system. The frames contain the 1/0-Data together with their associated data status.
Furthermore each frame contains a “global” frame data status field which for example can be used
to mark the whole frame as invalid.

PROFINET organizes the cyclic data in a Provider-Consumer model. This means that an |O-data
consumer exists for every IO-data provider. Both indicate their current state to each other in
different frames. These states are the 10 Provider state (IOPS) and 10 Consumer State (IOCS).
The IOPS indicates if the associated data is valid or invalid. For instance a faulty submodule in a
device would mark its input data to be invalid by setting the IOPS appropriately. The I0CS is sent
from the consumer of the back to its provider to indicate if the data was handled. For instance a
DAC submodule may use this service to indicate the controller an output value which is out of the
DAC’s range.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Exchanging Cyclic Data 53/390

In PROFINET each submodule has its I/O-data and its 1/O-data states. Therefore for every
submodule used by the IO0-Controller there is not only the 1/0-data exchanged but additionally also
two 1/O-data states. In terms of the Ethernet frame structure the provider data state resides directly
behind the 1/0O-data itself and contains information if the 1/0-data is good and may be evaluated or
not. The consumer state is sent in the opposite direction in a different frame and contains
information if the I/O-data could be handled by the consumer.

0 Attention:

A © Because of the concept of a cyclic process data image, it is strongly recommended to
design the application in a way to cyclically read the consumer data and write the
provider data regardless of the communication state. The stack will take care of setting
the consumer data either to zero, to the last valid value or to some substitute value
(depends on parameters) if no communication is active.

Note:

If the application cannot be designed to cyclically read or write the process data or if the
cycle is slow (larger than 50 ms) it is recommended to read the consumer data when the
PNS_IF_I0_EVENT_CONSUMER_UPDATE_REQUIRED occurs and to write the provider data when
the PNS_IF_10_EVENT_PROVIDER_UPDATE_REQUIRED event is signaled.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Exchanging Cyclic Data 54/390
5.2 Behavior regarding 10 data and IOPS

An application determines the behavior of physical outputs. The PROFINET |0 stack transfers the
output data received from the controller into the 10 image (e.g. DPM) only. The application has to
decide whether this data is transfered to physical outputs or not. If activated, the stack can add
status information (IOPS) to the data. IOPS is generated by the provider of the data (IO Controller).
Using IOPS the application can decide to transfer the data to the physical outputs or not depending
on the data validity indicated by IOPS.

Section Set IOXS Config Service on page 105 describes how to activate the IOPS. Depending on
the configuration, three possible modes exist using data with or without status.

In case of an error, the default behavior of the PROFINET stack is the copying of zeros into the 10
image for all affected submodules.

Data without IOPS

The stack transfers the data only. In case of an error, the stack sets the data of all affected
submodules to zero. In case of all values of a submodule are zero, the application can not detect
whether the controller sends valid values (which are zero) or wheter this is invalid data caused by
an error.

Note:
Using data without IOPS is not recommended.

0 Attention:

A © If an application does not use the I0XS interface (Set IOXS Config Service), the
application has no opportunity to determine invalid data because zeros are also
evaluated as valid.

Data with IOPS - Mode bitwise

In this mode, IOPS is activated in mode bitwise. Each submodule has one status bit. Table 23 lists
the coding for a bit.

IOPS Description

DataState 0 - Bad, data not valid.

1 - Good, data is valid.
Table 23: IOPS - DataState - Bitwise mode

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Exchanging Cyclic Data

55/390

Data with IOPS - Mode bytewise

In this mode, IOPS is activated in mode bytewise.

The application has to verify bit 7 of the IOPS. Bits 5-6 has additional information about the
instance that has detected invalid data.

IOPS

Description

Bit 5-6 - Instance

These bits indicate the instance that has detected invalid data. If DataState is set to good, bits

5-6 do not care.

00 - Detected by subslot.

01 - Detected by slot.

10 - Detected by 10 Device.

11 - Detected by 10 Controller.

Bit 7 - DataState

0 - Bad, data not valid.

1 - Good, data is valid.

Table 24: IOPS - DataState - Bytewise mode

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Exchanging Cyclic Data 56/390

5.3 Exchanging cyclic Data using Callback Interface
53.1 Overview of the Callback Interface

The PROFINET Device Stack provides a simple callback interface to local applications for
accessing the cyclic input/output data. Using this interface most of the PROFINET specific logic is
hidden from the user application. Basically all data exchange can be performed by calling of two
callback functions provided by the stack. For more sophisticated setups the user application shall
provide an event callback function which will be used by the stack to indicate events to the user
application. Generally the callback interface requires the following tasks from the user application’s
view:
1. The user application has to allocate two memory blocks. One to hold the consuming (output)
and one to hold the providing (input) data. These blocks shall be large enough to hold the 10-
data and the IOPS if desired.

2. Pass the pointers to the blocks, their size and optionally user application’s event callback
function pointer to the stack using the Set I0-Image Service described in section Set 10-
Image Service on page 101. In return this service will provide the user application with
function pointers of the callback functions to call for data exchange.

3. Now call the callbacks either cyclically or if necessary:

To update the outgoing provider data call the UpdateProviderimage Callback described
in section UpdateProviderimage Callback on page 58 whenever the outgoing data has
changed.

To get the newest incoming consumer data, call the UpdateConsumerlmage described
in section UpdateConsumerlmage on page 57 periodically.

5.3.2 Callback Functions

The callback interface consists of four functions. Three of them are used by the application to
update the consumed data, update the provided data or get information about the state areas
within the I0-data images. The fourth callback is provided by the user application to the stack. This
callback is used by the stack to inform the application about cyclic events.

Note:

The callback functions may only be called by the application in task context. They
shall not be called in interrupt context when the interrupt modes SYSTEM or
INTERRUPT are used.

Otherwise the stack may get stuck or the operating system task scheduler will not
work properly any longer.

- Note:
0 The callback functions may only be called by the application in one task context.
They shall not be called in different contexts (e.g. by different tasks).

Otherwise the application may get stuck or the operating system task scheduler will
not work properly any longer.

Note:

0 Prior using the callback interface the application has to provide the stack with a
consumer and a provider IO image and a pointer to the event callback function. The
other way round the application needs the function pointers of the stack’s callback
functions. For this the PNS_IF_SET_10IMAGE_REQ request has to be issued by the
user’s application before any stack initialization.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Exchanging Cyclic Data 57/390

5.3.2.1 UpdateConsumerimage Callback

. - Note:

0 The Update Consumerimage callback function may only be called by the application in
task context. It shall not be called in interrupt context when the interrupt modes SYSTEM

or INTERRUPT are used.

Otherwise the stack may get stuck or the operating system task scheduler will not work
properly any longer.

This callback is used by the user’s application to update the consumer data image from the last
received cyclic frames. The consumer data will be copied from the frame into the consumer image
according to the submodule configuration supplied by the user’s application. If enabled, the
function will also copy the associated provider states into the provider state block of the consumer
image. While the stack is updating the consumer image the data of the image will be inconsistent.
Therefore the user application must not access the consumer image until the stack has finished
updating the image The UpdateConsumerimage callback is defined by the following type
declaration:

typedef TLR_RESULT (*PNS_IF_UPDATE_I10IMAGE_CLB T) (
TLR_HANDLE hUserParam,
TLR_UINT fLateConfirmation,
TLR_UINT uiReservedl,
TLR_UINT uiReserved?2
)

The four parameters of the callback are described as follows:

Parameter Meaning
hUserParam This parameter is a handle obtained from the stack by using the PNS_IF_SET_10IMAGE_REQ.

fLateConfirmation | If this parameter is set to zero, the callback will return after the stack has finished updating the
consumer data image. (The calling task will be blocked). If this parameter is set to a non-zero
value, the function will return immediately and stack will use the
PNS_IF_10_EVENT_CONSUMER_UPDATE_DONE event later on to notify the user application
about finishing the update.

uiReservedl Reserved for future usage. Set to zero.

uiReserved2 Reserved for future usage. Set to zero.

Table 25: Parameters of UpdateConsumer Image Callback

The callback uses the following return codes:

Return code Meaning
0x00000000 TLR_S_OK: No Error.
Table 26: Return Codes of UpdateConsumer Image Callback

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Exchanging Cyclic Data

58/390

5.3.2.2 UpdateProviderimage Callback

. - Note:
0 The Update Providerimage callback function may only be called by the application in

task context. It shall not be called in interrupt context when the interrupt modes SYSTEM
or INTERRUPT are used.

Otherwise the stack may get stuck or the operating system task scheduler will not work

properly any longer.

This callback is used by the user’s application to update the cyclic frames sent by the 10-Device to
the 10-Controller from the provider data image. The provider data will be copied from provider
image into the cyclic frame according to the submodule configuration supplied by the user’s
application. If enabled, the function will also copy the associated provider states from the provider
state block of the provider image. While the stack is updating the frames, the user application must
not change the content of the provider image. Otherwise inconsistent or invalid data may be
transmitted to the bus. The UpdateProviderimage callback is defined by the following type

declaration:

typedef TLR_RESULT (*PNS_IF_UPDATE_IOIMAGE_CLB_T) (

TLR_HANDLE hUserParam,

TLR_UINT fLateConfirmation,

TLR_UINT uiReservedl,
TLR_UINT uiReserved2

);
The four parameters of the callback are described as follows:
Parameter Meaning
hUserParam This parameter is a handle obtained from the stack by using the
PNS_IF_SET_IOIMAGE_REQ.
fLateConfirmation If this parameter is set to zero, the callback will return after the stack has

finished updating the frames from provider data image. (The calling task will be
blocked) and finished its current internal cycle. If this parameter is set to a non-
zero value, the function will return immediately and stack will use the
PNS_IF_10_EVENT_PROVIDER_UPDATE_DONE event later on to notify the
user application about finishing the update.

) If this parameter is set to zero the calling task may be blocked
' up to Ims. Thus it is highly recommended to set this value to a
non-zero value.

uiReservedl

Reserved for future usage. Set to zero.

uiReserved2

Reserved for future usage. Set to zero.

Table 27: Parameters of UpdateProvider Image Callback

The callback uses the following return codes:

Return code

Meaning

0x00000000

TLR_S_OK: No Error.

Table 28: Return Codes of UpdateProviderImage Callback

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Exchanging Cyclic Data 59/390
5.3.2.3 Event Handler Callback

This callback has to be provided by the user’s application to the stack. It will be called by the stack
upon events defined in section 4.4 Event Mechanism. As the callback will be called from stacks
task context, the user must consider locking of shared resources.

Note:
0 In the Event Handler Callback it is strictly forbidden to call any OS function that
waits for any objects or forces task to “sleep” state.

The Event Handler callback is defined by the following type declaration:

typedef TLR_RESULT (*PNS_IF_IOEVENT_HANDLER_CLB_T) (
TLR_HANDLE hUserParam,
TLR_UINT uiEvents

)
The two parameters of the callback are described as follows:
Parameter Meaning
hUserParam This parameter is a handle supplied by the user by the
PNS_IF_SET_I10IMAGE_REQ request.
uiEvents This argument is the event number.

The return value of the function is currently ignored by the stack. However the value 0x00000000
(TLR_S_OK) should be used for compatibility with future versions of the stack.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status Information

60/390

6 Status Information
6.1 Communication State

In general the Communication State is described in [4].
This section describes how the Communication State is used by PROFINET 10 Device.

6.1.1 Implementation from V3.10

Starting with PROFINET 10 Device V3.10.0.0 the default handling of communication state is as
described in the following table:

State Description

OFFLINE The 10 Device has no valid configuration.

STOP The 10 Device has no communication to the IO Controller. Connection establishment is
not in progress. The Bus state of the IO Device may be set to on or off.

IDLE The communication establishment is in progress (at least one CMDEV state is >
W_CIND and no CMDEYV state is INDATA).

OPERATE The 1/0O connection is established and valid I/O data is exchanged between the Controller

and the Device (at least one CMDEYV state is INDATA).

Table 29: Communication State (V3.10 and later)

6.1.2 Legacy Implementation (V3.9 and earlier)

Implementations of version V3.9 and earlier behave as follows.

State Description

OFFLINE No valid configuration.

STOP Valid configuration and (Bus off or Link down or Fatal Error).
IDLE n.a. (Note: this state is not used at all)

OPERATE Valid configuration and Bus on and Link up.

Table 30: Communication State (V3.9 and earlier)

If needed, legacy handling could be enabled by setting the AP task startup parameter
PNS_AP_DPM_STARTUP_FLAG_LEGACY_COMM_STATE in firmnware/stack V3.10.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

61/390

7 Packet Interface
7.1 Configuring the IO-Device Stack

This chapter explains how the PROFINET Device stack is configured at start-up. The Configuration
is either read out from SYCON.net database, taken from iniBatch configuration files or provided by
the application by means of Set Configuration Service (see section Set Configuration Service on

page 67).
In detail, the following configuration functionality is provided by the PROFINET IO Device IRT
Stack:
Overview over the Configuration Packets of the PROFINET IO Device IRT Stack
Section | Packet Command |Page
code
6.1.5 Set Configuration Request Ox1FE2 67
Set Configuration Confirmation Ox1FE3 76
6.1.10 Set Port MAC Address Request Ox1FEO 86
Set Port MAC Address Confirmation Ox1FE1l 87
6.1.11 Set OEM Parameters Request Ox1FES8 89
Set OEM Parameters Confirmation Ox1FE9 96
6.1.12 Load Remanent Data Request Ox1FEC 97
Load Remanent Data Confirmation Ox1FED 99
6.1.13 Configuration Delete Request Ox2F14 100
Configuration Delete Confirmation Ox2F15 100
6.1.14 Set |IO-Image Request Ox1FFO0 101
Set 10-Image Confirmation Ox1FF1 103
6.1.15 Set I0XS Config Request Ox1FF2 105
Set IOXS Config Confirmation Ox1FF3 107

Table 31: Overview over the Configuration Packets of the PROFINET IO Device IRT Stack

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 62/390
7.1.1 Cyclic Process Data Image

The PROFINET 10 protocol uses a cyclic process data model to exchange process data between
the PROFINET IO Controller and Device. That is, the PROFINET 10 Controller's application and
the PROFINET IO Device's application periodically update their own copies of the process data.
These two images are periodically synchronized vice versa by the Protocol Stacks.

In PROFINET process data is organized at the level of submodules. Each submodule can be
assigned input and/or output process data. Submodules without any data are assigned with a zero
length to the input process data block. Each process data block is associated with a provider data
status (IOPS) and a consumer data status (IOCS). The provider data status is generated by the
producer of the data and thus is exchanged in the same direction as the process data itself. It
indicates whether the data is valid. In contrast to that the consumer data status is generated by the
consumer of the data and thus exchanged in the opposite direction than the process data. It
indicates if the consumer of the data was able to use the data. The data status reflects the validity
of the process data at application level. That means in particular, that the application must indicate
invalid data. This cannot be done by the protocol stack. Nevertheless, the protocol stack might
force a Bad Provider/Consumer State on certain Submodules if required by the Protocol.

Note: In order to simplify the host application development, the Hilscher PROFINET Device
stack is configured by default in an operation mode where it assumes valid data
whenever DPM Output Area/Provider Data Area is updated. If explicit provider and/or
consumer status processing is required, the stack must be configured using the
Configure 10XS Service.

7.1.2 Configuration of Process Data Images

From the PROFINET IO Device viewpoint, the Provider Process Data Image is the data which is
sent from the PROFINET 10 Device to the PROFINET IO Controller. This is usually called Input
Process Data (Inputs). This data is to be placed by the application in the Provider Process Data
Image. If a Loadable Firmware or Module is used, the Provider Data Image corresponds to the
DPM Output Area. For Linkable Objects, the Provider Process Data Image is defined by the
Application as a gapless memory block and has to be provided to the Protocol Stack.

Attention: Remind that Process Data sent to the PROFINET 10 Controller, which is typically
called Inputs, is to be placed within the DPM Output Area. This Naming issue might
lead to confusion.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

63/390
DPM Output/ [z|of=|«
Provider Img [@[@[a[@ IOPS I0CS

-
=
-

-

Set 10-Image Service
pbProvimage

Set IOXS Config Service
ulProvimagelOPSOffset

ulProvimagelOCSOffset o|o|o|=|~|m|s
5|5[5|5l8|8|8[|un|of~|w
unjunjunjunjuniunuv Fir) N)
. . . ol|ofolo
Set Configuration Service/ 7] [() [
Plug Submodule Service | jf
/

usOffsetlOPSProvider
usOffsetlOCSProvider

~L

Figure 8: Provider Process Data Structure

The red color indicates data associated with input submodules. Slot O refers to the DAP and PDEV submodules which
are also input submodules and must be always present.

The Process Data Image consists of up to three blocks: The Process Data itself, a Provider Data
Status Area and a Consumer Status Area. This is shown in image provider.

In contrast to that the Consumer Process Data Image is the data which is sent from the PROFINET
IO Controller to the PROFINET 10 Device. (If looking from PROFINET IO Device Viewpoint). This
data is typically called Output Process Data (Outputs). This data should be taken by the application
from the Consumer Process Data Image. If a Loadable Firmware or Module is used, the Consumer
Process Data Image corresponds to the DPM Input Area. For Linkable Objects, the Consumer

Process Data Image is defined by the Application as a gapless memory block and has to be
provided to the protocol stack.

Attention: Remind that Process Data received from the PROFINET Controller, which is typically

called Outputs is to be placed within the DPM Input Area. This Naming issue might
lead to confusion.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 64/390

DPM Input/ [o]e|~[
Consumer [ao[@[= IOPS I0CS
Img | A A

Set 10-Image Service
pbConsimage

Set IOXS Config Service

ulConsimagelOPSOffset
ulConsimagelOCSOffset

Slot 6
Slot 7
Slot 8

ol|o|o|old|N|m| =
i)))) JrA) W) e
k=] =] el]]) e e
n|n|n|v|u|n|n|n

Set Configuration Service/
Plug Submodule Service

usOffsetlOPSConsumer
usOffsetlOCSConsumer

.
—

~

I%P

Figure 9: Consumer Process Data Structure

The red color indicates data associated with input submodules. Slot O refers to the DAP and PDEV submodules which
are also input submodules and must always be present.

Note: If the host application uses consumer data states it is important to understand that the
Consumer Data State of a submodule is to be placed in the opposite Process Data
Image than the Process Data itself. This is because the Consumer Data States are a
kind of confirmation from the receiver for the sender of the data.

In order to configure the process data image structure, the following steps must be performed:

1. If a Linkable Object is used, the first step is to provide the stack with the pointer to the
process data memory blocks by means of Set IO Image Service. The memory areas must be
defined by the application and shall be large enough to hold the data. This step is not
required if Dual Port Memory or Shared Memory Api is used. In that case the Provider
Process Data Image corresponds to the DPM Output Area and the Consumer Process Data
Image corresponds to the DPM Input Area.

2. The second step is optional and only required if Provider and/or Consumer Process Data
States are prepared by the Host Application. This step enabled the IOPS and/or IOCS blocks
which are disabled by default. If these Blocks shall be used, the Host Application must
configure the start offsets of them. These Offsets are relative to the Beginning of the
corresponding Process Data Image. The Set I0XS Config Service shall be used for this
purpose. These offsets are configured in units of Bytes.

3. The third step in configuring the process data images is to specify the location of the process
data and the data states within their corresponding areas. These parameters are part of the
Set Configuration Service and/or Plug Submodule Service. The offset of the Process Data is
always specified in bytes relative to the beginning of the corresponding process data
memory. The offsets of the data states are always relative to the beginning of the
corresponding data state block. These offset are either in units of bytes or in units of bits.
This depends on the mode configured in step 2.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 65/390

7.1.3 Configuration of the Submodules

This option will just be evaluated if the IOXS Configuration Service has been performed before or
the stack will ignore the configuration values. If IOXS is configured it is mandatory to configure
correct offsets for each submodule.

The configuration is done by the Set Configuration Request for each (see section Set Configuration
Request).

7.1.4 Configuring the PROFINET IO Device Stack

In order to configure a PROFINET IO Device using the PROFINET 10 Device Stack correctly,
proceed as follows:

Configure the 10 Image with the Set 10-Image Service if Dual-Port-Memory or Shared
Memory Interface is not used

If necessary, assign a MAC Address to the device. This is described in the netX Dual-Port
Memory Manual. Additionally, PROFINET requires assigning of Port MAC Addresses. It is
necessary to assign a MAC address if no local MAC address exists (e.g. no Security
Memory).

0 Important:
L Changing the MAC Address always requires a reboot of the PROFINET IO Device Stack!

Restore the remanent data using the Load Remanent Data Service if remanent data is not
handled by the stack but by the application.

Set the OEM parameters using the Set OEM Parameters Service if the Hilscher default
values are insufficient.

Register the application using the Register Application Service in order to receive indications
from the PROFINET IO Device stack if this is required.

Configure the I0xS handling with the Set IOXS Config Service if IOxS access is required.

Configure the device using the Set Configuration Service. This means providing the device
with all parameters needed for operation. These include both basic parameters for
identification such as NameOfStation, DevicelD and VendorlID as well as the module
configuration. This module configuration contains information about the APIs, modules and
submodules the stack will use. When the stack returns the Set_Configuration packet
back to the application, the given configuration has been evaluated completely and prepared
for applying. If Dual-Port-Memory or Shared Memory Interface is in use it will indicate the
new configuration to the user by setting the bits “Configuration new” and “Restart required” in
the communication COS register.

Perform the Channel Initialization/ConfigReload (see reference [3]) to take over the new

configuration and cause the stack to use the new parameters. After this the stack is ready to
start communication with an 10-Controller.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

66/390

A graphical representation of this sequence is shown in Figure 6.

Stack

Application

alt

) [not Shared Memory / cifX Toolkit]

"' Set 10Image Req

e

Set 10Image Cnf

.

alt

/ [If Ho Mac Address Set]

Set Mac Address Req

A

Set Mac Address Cnf

Set Port Mac Address Req

4

©

Set Port Mac Address Cnf

-

alt

) [remanent data avail]

Load Remanent Data Req

A

Load Remanent Data Cnf

t

alt

/ [If OEM specific settings]

Set OEM Farameters Req

- I
| Set OEM Parameters Cnf-'s
Stack Application

Figure 10: Configuring the PROFINET IO Device Stack

7.14.1

Remark on Reconfiguration

Stack Application

alt /[Indications Required)

. Register Application Req |

- [

I Register Application Cnf

! >
alt [W Configuration with Paclkets]

|_alt__/ [If10xS Handiing] !

| Set |OXS Config Req |

- i

| Set I0XS Config Cnf :

; >

' Set Configuration Req !

- |

| Set Configuration Cnf :

L i

| Channel Init Req |

o i

' Channel Init Cnf !

! >
Stack Application

It is possible to reconfigure the stack at any time. To do so, simply send a new configuration to the
stack followed by a Channel Init Request (see reference [3]). Sending the new configuration
without the Channel Init Request will not have an effect on any running communication. The new
parameters will simply be stored. Sending the Channel Init Request will stop any communication
and take over the new parameters.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 67/390

7.1.5 Set Configuration Service

This packet has to be sent by the application. The Set Configuration Service shall be used by
application to configure the stack on startup.

Using the Set Configuration packet the application provides information about the API, the modules
and the submodules to the stack. This module configuration may be changed later at runtime using
the Pull (see sections 6.4.9 and 6.4.10) and Plug services (see sections 6.4.7 and 6.4.8).

0 Attention:

L As described in Dual Port Memory manual (Ref. 4), it is required to send a Channel
Initialization request (Channelinit) to the protocol stack after the Set Configuration
Request has been performed. The stack will not use the configuration until the Channel
Initialization Request has been received.

0 Attention:

A © If the stack is configured using the Set Configuration Service, the NameOfStation and the
IP Parameters must be handled by the application. In turn the application must register
with the stack in order to receive the relevant indications (See section Register
Application Service).

This attention is not applied if bit D17
(PNS_IF_SYSTEM_NAME_IP_HANDLING_BY_STACK_ENABLED) in System flags is set,
see Table 34.

7.15.1 Set Configuration Request

The application has to send this request to the protocol stack. As the configuration of modules and
submodules can (almost) freely be defined by the application, this packet cannot have a fixed
layout. This packet has to be considered as a data container.

If the stack is accessed via Dual Port Memory, the application may need to fragment the request
packet due to the limited mailbox size. The handling of the fragmented service by the application
and the stack is described in reference [3].

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

68/390

structure PNS_IF_SET_CONFIGURATION_REQ T

Type: Request

A_T

Area| Variable Type Value / | Description
Range
Head| structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF
task process queue
ulSrc UINT32 Source Queue-Handle of application
task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not
in use, set to zero for compatibility
reasons.
ulSrclid UINT32 0 ... 232 | Source End Point Identifier,
-1 specifying the origin of the packet
inside the Source Process.
ulLen UINT32 Packet data length in bytes. This is a
value depending on the amount of
submodules.
ulld UINT32 0 ... 2%2 | Packet identification as unique
-1 number generated by the source
process of the packet
ulSta UINT32 0 Status not in use for request.
ulCmd UINT32 Ox1FE2 | PNS_IF_SET_CONFIGURATION_REQ
-Command
ulExt UINT32 0 Extension not in use, set to zero for
compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_1F_SET_CONFIGURATION_REQ DATA T
ulTotalConfigPckLen | UINT32 Length (in bytes) of the entire
configuration data.
If the size of the whole
Set_Configuration Request exceeds
the DPM mailbox size sequenced
mechanisms have to be used.
This parameter in the very first packet
shall contain the complete size of all
sequenced packets (without the
packet headers).
tDeviceParameters PNS_IF_DEVICE_PARAMETER_T The structure describing the device
parameters, see explanation below.
tModuleConfig PNS_IF_MODULE_CFG_REQ_DA The structure describing APIs and
TA_T submodules, see explanation below.
tSignalConfig PNS_IF_SIGNAL_CFG_REQ_DAT This optional structure is needed if

little endian byte order shall be used.
It describes the data structure of each
submodule

Table 32: PNS_IF_SET_CONFIGURATION_REQ_T - Set Configuration Request

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

69/390

tDeviceParameters is structured like this:
typedef struct PNS_IF DEVICE PARAMETER_ Ttag

{

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT8

TLR_UINT32
TLR_UINT8

TLR_UINTS8

TLR_UINT8

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT16
TLR_UINT16
TLR_UINT16
TLR_UINT16
TLR_UINTS8

TLR_UINT8

TLR_UINT16
TLR_UINT16
TLR_UINT16

ulSystemFlags;

ulwdgTime;

ulVendorld;

ulDeviceld;

ulMaxAr;

ulCompletelnputSize;

ulCompleteOutputSize;

ulNameOfStationLen;
abNameOfStation[PNIO_MAX NAME_OF_ STATION];
ulTypeOfStationLen;
abTypeOfStation[PNIO_MAX_TYPE_OF_STATION];
abDeviceType[PNS_IF_MAX DEVICE_TYPE_LEN +3];
abOrder1d[PN10_MAX_ORDER_ID];

ul IpAddr;

ulNetMask;

ulGateway;

usHwRevision;

usSwRevisionl;

usSwRevision2;

usSwRevision3;

bSwRevisionPrefix;

bReserved;

usMaxDiagRecords;

uslnstanceld;

usReserved;

} PNS_IF_DEVICE_PARAMETER_ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

70/390

Data

structure tDeviceParameters
ulSystemFlags | UINT32 Flags for system behavior. See below.
ulwdgTime UINT32 | Defaultvalue: | Watchdog time (in milliseconds).
1000 0 = Watchdog timer has been switched off
Allowed
values:
0, 20...65535
ulVendorlid UINT32 | 1..65279 Vendor ID:
(= OXFEFF)*, Vendor identification number of the manufacturer, which has
Hilscher: been assigned to the vendor by the PROFIBUS
286 (decimal)/ Nutzerorganisation e. V.
0X011E (hex) All Hilscher products use the value Ox011E.
ulDeviceld UINT32 |1..(2%6-1)* |Device ID
e.g.._for cifX 50- | This is an identification number of the device, freely eligibly by
RE::) the manufacturer, which is fixed and unique for every device.
259 (decimal)/
0x103 (hex)
ulMaxAr UINT32 |0 Currently not used. Set to zero.
ulCompletelnp | UINT32 | Default Maximum amount of allowed input data. The sum of data of all
utSize value:128 submodules configured by the user must not exceed this value.
Allowed values: | This field references input data as data received by the 10-
0.. 1440 Bytes | Device.
ulCompleteOut | UINT32 | Default Maximum amount of allowed output data. The sum of data of all
putSize value:128 submodules configured by the user must not exceed this value.
Allowed values: | This field references output data as data sent by the 10-Device.
0.. 1440 Bytes
ulNameOfStati | UINT32 |0..240 Length of NameOfStation
onLen
abNameOfStati | UINTS]] The NameOfStation as ASCII char-array.
on[240] If bit D17 in the system flags ul SystemFlags is set the stack
doesn’t evaluate this parameter, the stack will use the
NameOfStation saved in remanent data.
ulTypeOfStati | UINT32 |1..240 Length of TypeOfStation
onLen
abTypeOfStati | UINTS]] The TypeOfStation as ASCII char-array.
on[240]
abDeviceType[| UINTS]] The DeviceType as ASCII char-array. The last 3 bytes are
28] reserved padding bytes and shall be set to zero.
abOrder1d[20] | UINTS][] The OrderID as ASCII char-array.
ul IpAddr UINT32 | Valid IP IP address.
addres§, If bit D17 in the system flags ul SystemFlags is set, the stack
default: 0.0.0.0 | joes not evaluate this parameter. The stack will use the IP
address saved in remanent data.
ulNetMask UINT32 | Valid network Network mask.
mask, default: | i pit D17 in the system flags ul SystemFlags is set, the stack
0.0.0.0 does not evaluate this parameter. The stack will use the
network mask saved in remanent data.
ulGateway UINT32 | Valid gateway | Gateway address.

address,
default: 0.0.0.0

If bit D17 in the system flags ulSystemFlags is set, the stack
does not evaluate this parameter. The stack will use the
gateway address saved in remanent data.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 71/390

usHwRevision |UINT16 |O..OxFFFF, Hardware Revision
default: 0
usSwRevisionl | UINT16 |0..0xFFFF, Software Revision 1
default: 0
usSwRevision2 | UINT16 |0..0xFFFF, Software Revision 2
default: 0
usSwRevision3 | UINT16 |0..0xFFFF, Software Revision 3
default: 0
bSv_vRevisionPr UINTS V', 'R, ‘P, ‘U, | Software Revision Prefix
efix T Possible values and their meanings are:
‘V': Released version
‘R’: Revision
‘P’ Prototype
‘U’ Under field test
‘T": Test device
bReserved UINT8 0 Reserved, set to zero.
usMaxDiagReco | UINT16 | 1..0xFFFF, The maximum number of user diagnosis records the stack is
rds default: 0 able to handle in parallel.
Note: This field has influence on the amount of memory the
stack requires.
usinstanceld |UINT16 |O..OxFFFF, Instance ID. This parameter must match to value
default: 0 ObjectUUID_Local Index in the GSDML file corresponding
to the 10-Device. The value 1 is recommended.
usReserved UINT16 |0 Reserved for future use, set to zero

Table 33: Structure tDeviceParameters

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

72/390

Bit No

Behavior to influence

Flag Define/ Desired Behavior

DO

Bus State after applying
configuration

For more information
concerning this topic see
section 4.4.1 “Controlled or
Automatic Start” of the netX
DPM Interface Manual.

O - PNS_IF_SYSTEM_START_AUTO_START
The stack will enable the Bus (Network access) right after Channel
Initialization.

1 - PNS_IF_SYSTEM_START_APPL_CONTROLLED
The stack disables the Bus after Channel Initialization. Application shall
use Start/Stop Communication Service to enable Bus.

D3

Byte order of Process Data

O - PNS_IF_SYSTEM_BYTEORDER_BIG_ENDIAN
The stack uses big endian byte order for process data.

1 - PNS_IF_SYSTEM_BYTEORDER_LITTLE_ENDIAN

The stack uses little endian byte order for process data. ATTENTION:
Using this mode causes a lot of CPU usage and may have a bad
impact on minimum reachable cycle time.

D8

Identification & Maintenance
Handling

O - PNS_IF_SYSTEM_STACK_HANDLE_1_M_DISABLED
I&M Requests are only parsed by the stack and will be forwarded to the
application using Read 1&M Indication and Write 1&M Indication. The

application must handle the I&MO0-4 Data sets.

1 - PNS_IF_SYSTEM_STACK_HANDLE_I1_M_ENABLED

I&M Requests are handled internally by the stack. 1&M 0-4 is supported
on DAP submodule (Slot 0, subslot 1).

D9

Automatic Application Ready if
no application registered

0 - PNS_IF_SYSTEM_ARDY_WOUT_APPL_REG_DISABLED

The Stack will never generate an Application Ready Sequence if no
application is registered: Therefore the application must register with the
stack in order to establish an AR.

1 - PNS_IF_SYSTEM_ARDY_WOUT_APPL_REG_ENABLED

The stack will generate an Application Ready automatically if no
application is registered. Use this flag with care: the stack has no
information about the Readiness of the application. Therefore sending
Application Ready automatically can be dangerous.

D11

Generate Check Indications
for matching submodules

0 - PNS_IF_SYSTEM_CHECK_IND_ALL_MODULES_DISABLED
The stack will not generate a Check Indication for expected submodules
that match the configuration.

1 - PNS_IF_SYSTEM_CHECK_IND_ALL_MODULES_ENABLED

The stack will generate a Check Indication for expected submodules that
match the configuration. E.g. the application will receive a Check
Indication for each submodule owned by an AR.

D12

Handle Link Down as Fatal
Error

0 - PNS_IF_SYSTEM_HANDLE_LINK_DOWN_AS_FATAL_DISABLED
The Stack will not treat link down events as fatal error.

1 - PNS_IF_SYSTEM_HANDLE_L INK_DOWN_AS_FATAL_ENABLED
The Stack will treat link down events as fatal error. Among other things,
the stack will disable the bus (Network access) in case of a link down.

D13

Generate Check Indications
for unused modules

O - PNS_IF_SYSTEM_CHECK_IND_UNUSED_MODULES_DISABLED
The stack does not generate a Check Indication for modules not used by
any AR.

1 - PNS_IF_SYSTEM_CHECK_IND_UNUSED_MODULES_ENABLED
The stack will generate a Check Indication for each submodule not used
by any AR right before generating the Connect Request Done Indication.
If another controller starts establishing an AR while these Check
Indications are generated, the stack will stop generating these Check
Indications and restart after processing another AR expected
submodules.

The stack generates Check Indication also after AR Abort Indication
service.

D14

Remanent Data Handling

O - PNS_IF_SYSTEM_DISABLE_STORE_REMANENT_DISABLE
The stack handles the storing of remanent data. This requires to use of
DPM/SHM and non volatile storage (Flash memory) is available.

1 - PNS_IF_SYSTEM_DISABLE_STORE_REMANENT_ENABLED
The application handles the storing of remanent data.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

73/390

Bit No

Behavior to influence

Flag Define/ Desired Behavior

D15

Generate Link State change
Indications

O - PNS_IF_SYSTEM_ENABLE_LINK_STATE_INDICATION
The stack will generate a Link Status Changed Indication if the link state
changes on any port.

1 - PNS_IF_SYSTEM_DISABLE_LINK_STATE_INDICATION
The stack not generate Link Status Changed Indication.

D16

Check if IO-data offsets in 10-
image

0 - PNS_IF_SYSTEM_ENABLE_10_OFFSET_CHECKING
The stack will check if I0-data offsets in |0-image (or DPM) are
configured properly

1 - PNS_IF_SYSTEM_DISABLE_10_OFFSET_CHECKING

The stack will newer check if I0-data offsets in 10-image (or DPM) are
configured properly. ATTENTION: disabling this check may lead to
inconsistent IO-data in case of a faulty application configuration.
Disabling this check will lead to invalid stack response to the service
RCX_GET_DPM_IO_INFO_REQ!

D17

Device name and IP-
parameters Handling

Note: This feature is
supported starting with stack
version V3.5.46.0

O - PNS_IF_SYSTEM_NAME_IP_HANDLING_BY_STACK_DISABLED
The parameters for Name of station and the IP address parameters are
used from the Set Configuration Service. This means, that the application
has to store these parameters when the indications
PNS_IF_SAVE_STATION_NAME_IND and/or
PNS_IF_SAVE_IP_ADDR_IND is send from the stack. The application
has to use the stored values and to use them in the next Set
Configuration Service. The application has to reset them on
PNS_IF_RESET_FACTORY_SETTINGS_IND and use the reset values in
the next Set Configuration Service.

1 - PNS_IF_SYSTEM_NAME_I1P_HANDLING_BY_STACK_ENABLED
The parameter for Name of station and the IP address parameters
transferred with the Set Configuration Service are ignored and the values
from the remanent data are used instead.

The stack must have a possibility to save the Remanent Data: either
DPM/SHM is in use and non volatile storage (flash memory) is available
or application (using the linkable object module) supports Store Remanent
Data Service and Load Remanent Data Service.

Table 34: System flags to use for configuration of the Stack

tModuleConfig is structured like this:
typedef struct PNS_IF _MODULE CFG_REQ DATA Ttag

/* number of API

elements to follow */

TLR_UINT32 ulINumApi ;
} PNS_IF_MODULE_CFG_REQ DATA T;

It contains the number of API elements of the tModuleConfig structure as first element.
This is stored in variable ulNumApi. If you want to configure the device for using m APIs,
you set ulNumApi to the value m.

For every additional APl a structure describing it and its submodules follows the last
submodule structure of the preceding API. Assume this API should be configured for using n
submodules.

structure PNS_I1F_AP1_STRUCT_T

Area

Variable Type Value / Range | Description

ulApi UINT32 |0..m-1

The number of the API profile to be configured. 0 indicates
“manufacturer specific”.

Currently only one single API is supported, so only the value 0
makes sense.

ullNumSubmodul | UINT32 |1..n
eltems

Number of submodule-items this API contains. These items
follow directly behind this entry.

Table 35: Structure PNS_I1F_AP1_STRUCT_T

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

74/390

For every submodule of the API a structure describing it follows the field ulNumSubmoduleltems.

structure PNS_IF_SUBMODULE_STRUCT T

Area | Variable Type Value / Description
Range
usSlot UINT16 The slot this submodule belongs to.
usSubslot UINT16 The subslot this submodule belongs to.
ulModulelD UINT32 The ModulelD of the module this submodule belongs to.

ulSubmodulelD UINT32

The SubmodulelD of this submodule.

ulProvDatalLen UINT32 |0..1440

The length of data provided by this submodule. This length
describes the data sent by |O-Device and received by I10-
Controller.

ulConsDatalen UINT32 |0..1440

The length of data consumed by this submodule. This length
describes the data sent by IO-Controller and received by 10-
Device.

ulDPMOffsetIn | UINT32

Offset in DPM InputArea or in Input-image (in pbConsimage,
see 6.1.14) where consumed data for the submodule shall be
copied to. This data is received by I0-Device and sent by 10-
Controller.

If the length of data in this direction is 0 this value shall be set to
0.

See section 6.1.3 for further information

ulDPMOFffsetOut | UINT32

Offset in DPM OutputArea or in Output-image (in pbProvimage,
see 6.1.14) where provided data of the submodule shall be
taken from. This data is sent by the I0-Device and received by
the 10-Controller.

If the length of thze data in this direction is 0 this value shall be
set to O.

See section 6.1.3 for further information

usOffsetlOPSPr | UINT16
ovider

Offset where the stack shall take the IOPS provider state for
this submodule relative to beginning of IOPS block in DPM
output area from.

See section 6.1.3 for further information

usOffsetlOPSCo | UINT16
nsumer

Offset where the stack shall put the IOPS consumer state of this
submodule relative to beginning of IOPS block in DPM input
area to.

See section 6.1.3 for further information

usOffsetlOCSPr | UINT16
ovider

Offset where the stack shall take the IOCS provider state for
this submodule relative to beginning of IOCS block in DPM
output area from.

See section 6.1.3 for further information

usOffsetl0OCSCo | UINT16

Offset where the stack shall put the IOCS consumer state for

nsumer this submodule relative to beginning of IOCS block in DPM
input area to.
See section 6.1.3 for further information

ullReserved UINT32 |0 Reserved for future use. Set to zero.

Table 36: Structure PNS_IF_SUBMODULE_STRUCT T

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 75/390

If you configure more than one APl (m>1), then PNS_IF_API_STRUCT_T and n times
PNS_1F_SUBMODULE_STRUCT_T will follow for each additional API.

~ Note:
0 Here the value n can be chosen individually for each API, thus the number of
submodules of the different APIs of the configuration may differ!

If little endian byte order shall be used for the process data image, the user has to provide the
stack with detailed information about the structure of the cyclic input and output data. For this the
user has to create one 10_SIGNALS CONFIGURE_SIGNAL_REQ_DATA T element for each
submodule and each direction the submodule has data for. (Two structures are needed for
combined input/output modules. No structure is required for submodules which do not have any
input/output data)

tSignalConfig is structured like this:
typedef struct PNS_IF_SIGNAL _CFG_REQ DATA Ttag

/* number of signals to follow */
TLR_UINT32 ulNumSignals;

/* array of ulNumSignals count 10_SIGNALS CONFIGURE_SIGNAL_REQ DATA T
* structures follows */
} PNS_IF_SIGNAL_CFG_REQ_DATA_ T

It contains the number of I0_SIGNALS CONFIGURE_REQ_DATA _T elements included in
tSignalConfig as first element. This is stored in the variable ulNumSignals. If you want to
configure the device for using n Signals, you set ulNumSignals to the value n.

After this field an (packed) array of n elements of type
IO_SIGNALS _CONFIGURE_REQ DATA T follows. The structure of
IO_SIGNALS_CONFIGURE_REQ_DATA_T is the same as the data part of the Configure
Signal Request described in section 6.1.16.1.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 76/390

7.1.5.2 Set Configuration Confirmation

This confirmation will be returned to the application.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T PNS_IF_SET_CONFIGURATION_CNF_T;

Packet Description

structure PNS_IF_SET_CONFIGURATION_CNF_T Type: Confirmation
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 0 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 See below.

ulCmd UINT32 Ox1FE3 PNS_IF_SET_CONFIGURATION_CNF -Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 37: PNS_IF_SET_CONFIGURATION_CNF_T - Set Configuration Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 77/390

7.1.5.3 Behavior when receiving a Set Configuration Command
The following rules apply for the behavior of the PROFINET 10 Device protocol stack when
receiving a set configuration command:
The configuration packet’'s name is
PNS_IF_SET_CONFIGURATION_REQ for the request packet and
PNS_I1F_SET_CONFIGURATION_CNF for the confirmation packet.
The configuration data are checked for consistency and integrity.
In case of failure no data are accepted.
In case of success the configuration parameters are stored internally (within the RAM).
The new configuration is not processed until a channel init is performed!
No automatic registration of the application at the stack happens.

The confirmation packet PNS_IF_SET_CONFIGURATION_CNF only transfers simple status
information, but does not repeat the whole parameter set.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

78/390

7.1.6 Register Application Service

Stack Application

Register Application Req
o

Register Application Cnfh

Link Status Changed Indh

J_ink Status Changed Cnf

<< Some Indication ==

Figure 11: Register Application Service Packet sequence

Using the Register Application Service the user application provides the stack an endpoint to send
indications to. If the user application is registered at the stack, it will receive the following

indications (if the event triggering any of these indications occurs):

Save Station Name Indication
Save IP Address Indication
Reset Factory Settings Indication
AR Check Indication

Check Indication

Connect Request Done Indication
Parameterization Speedup Support Indication
Parameter End Indication

Store Remanent Data Indication
AR InData Indication

APDU Status Changed Indication
Read Record Indication

Write Record Indication

Read 1&M Indication

Write 1&M Indication

Alarm Indication

AR Abort Indication Indication
Release Request Indication

Start LED Blinking Indication
Stop LED Blinking Indication

Link Status Changed Indication
Error Indication

Event Indication

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 79/390

Note:
0 It is required that the application returns all indications it receives as valid
responses to the stack. Especially it is not allowed to change any field in packet
header except ulSta, ulCmd and ulLen. Otherwise the stack will not be able to

handle and assign the response successfully.

The service is described in reference [3].

7.1.6.1 Register Application Request

This service is described in “DPM Interface Manual for netX based Products” [4]. The stack will
generate an initial Link Status Changed Indication when this request is received (See Figure 7:
Register Application Service).

7.1.6.2 Register Application Confirmation

This service is described in reference [3].

7.1.6.3 Register Application for Selective Indications Only

Starting with PROFINET 10-Device protocol stack version V3.5.50.0 the stack offers the “selective
indications only” function. With this function it is possible for an application to handle only the
indications the application is interested in. For all other indications it is possible to implement a
default handling in the application. In that case, the stack behaves in the same way as “if no
application would be registered”.

To activate this service there is no special handling required. Just the regular Register Application
service is used as described in section Register Application Request on page 79.

If the application does not want to handle a specific indication it is required that the application
returns this indications as responses to the stack changing only two fields in the packet header
and does not change anything in the data part of the other fileds in the header of the indication:

ulSta = TLR_E NO_APPLICATION_REGISTERED; /*unhandled indication*/
ulCmd ulCmd | 1; /*response command*/

To meet the conditions of PROFINET certification in such a case, the application has to fulfill the
following conventions:

Unhandled indication Conventions

Store Remanent Data Flag PNS_1F_SYSTEM DISABLE_STORE_REMANENT_DISABLE has to be used
in Set Configuration Request

Save Station Name and Flag PNS_1F_SYSTEM_NAME_IP_HANDLING_BY_STACK_ENABLED has to be

Save IP Address used in Set Configuration Request

Read I&M and Flag PNS_1F_SYSTEM_STACK_HANDLE_1_M_ENABLED has to be used in Set

Write 1&M Configuration Request

Event Indication The application has to update cyclically the provider data because of skipping the
event PNS_1F_I10_EVENT_PROVIDER_UPDATE_REQUIRED

Parameter End Flag PNS_1F_SYSTEM_ARDY_WOUT_APPL_REG_ENABLED has to be used in
Set Configuration Request

Start LED Blinking If the the application is working with the Linkable Object Module it must be possible to

Stop LED Blinking identify the PROFINET device visually so the application has to implement LED
blinking.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 80/390

7.1.7 Unregister Application Service

Using this service the application can unregister with the PROFINET Device stack: the stack will
not generate indications any more.

This service is described in reference [3].

7.1.7.1 Unregister Application Request

This service is described in reference [3].

7.1.7.2 Unregister Application Confirmation

This service is described in reference [3].

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 81/390

7.1.8 Register Fatal Error Callback Service

With this Service the user application can register a fatal error callback function to the stack. In
case of a fatal error the stack will call this function to allow the application to perform some needed
actions (e.g. set modules to a safe state).

Some examples of fatal errors that lead to calling the callback function:
Resource problem inside the stack (empty packet pool, full packet queue, no free memory)

Detection of a configuration error (e.g. inconsistent information about modules and its
parameters)

Note 1: If the application is not running locally on the netX this functionality is NOT available. In
this case the stack is informed about the error with a packet as described in section
Error Indication Service of this document. Therefore this service is NOT available if
Dual port Memory is used.

Note 2: It is necessary that the applications callback function returns. It is not allowed for the
callback function to enter any kind of while(1) loop.

7.1.8.1 Register Fatal Error Callback Request

With this request the application hands over the pointer of its error callback function. It is also
possible for the application to add one user parameter which will be handed over while calling the
callback function. It may contain the pointer to applications task resources or anything else
application may need.

Packet Structure Reference

/* Request packet */
typedef struct PNS_REG_FATAL_ERROR_CALLBACK_REQ DATA Ttag

PNS_FATAL_ERROR_CLB pfnCIbFnc;
TLR_VOID* pvUserParam;
} PNS_REG_FATAL_ERROR_CALLBACK_REQ DATA T;

typedef struct PNS_REG_FATAL ERROR_CALLBACK_REQ Ttag
TLR_PACKET HEADER T tHead;

PNS_REG_FATAL_ERROR_CALLBACK_REQ DATA T tData;
} PNS_REG_FATAL_ERROR CALLBACK_REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

82/390

Packet Description

structure PNS_REG_FATAL_ERROR_CALLBACK_REQ T

Type: Request

Area| Variable Type Value / | Description
Range
Head structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 0 ... 22 | Source End Point Identifier, specifying the origin of the
-1 packet inside the Source Process.
ulLen UINT32 8 Packet data length in bytes
ulld UINT32 0 ... 2%2 | Packet identification as unique number generated by the
-1 source process of the packet
ulSta UINT32 0 Status not in use for request.
ulCmd UINT32 Ox1FDA | PNS_REGISTER_FATAL_ERROR_CALLBACK_REQ-
Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_REG_FATAL_ERROR_CALLBACK_REQ_DATA_T
pfnClbFnc PNS_FATAL_ERROR_CLB The pointer to the callback function. Definition see below.
pvUserParam | void * This user specific parameter is handed over to the
callback function if it is called.

Table 38: PNS_REG_FATAL_ERROR_CALLBACK_REQ_T - Register Fatal Error Callback Request

Note:

o The definition of the type of callback function shall be as follows:

typedef TLR_VOID(*PNS_IF_FATAL_ERROR_CLB)(

TLR_VOID* pvUserParam);

TLR_UINT32 ulErrorCode,

7.1.8.2

Register Fatal Error Callback Confirmation

With this packet the stack informs the application about the success of registering the fatal error

callback function.

Packet Structure Reference

/* Confirmation packet */
typedef TLR_EMPTY_PACKET T

PNS_REG_FATAL_ERROR_CALLBACK_CNF_T;

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 83/390

Packet Description

structure PNS_REG_FATAL_ERROR_CALLBACK_CNF_T Type: Confirmation

Area | Variable | Type ‘ Value / Range | Description

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 [0...2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 |0 Packet data length in bytes

ulld UINT32 [0..2%2-1 Packet identification, untouched

ulSta UINT32 See below.

ulCmd UINT32 |Ox1FDB PNS_REGISTER_FATAL_ERROR_CALLBACK_CNF -
Command

ulExt UINT32 |0 Extension, untouched

ulRout UINT32 |x Routing, do not touch

Table 39: PNS_REG_FATAL_ERROR_CALLBACK_CNF_T - Register Fatal Error Callback Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 84/390

7.1.9 Unregister Fatal Error Callback Service

Using this service the user application can unregister a previously registered error callback function
from the stack. After unregistering this callback the application will only report fatal errors using the
service described in 6.3.13.

7.1.9.1 Unregister Fatal Error Callback Request

Using this request deletes the registered fatal error callback handle inside the stack.
Packet Structure Reference

/* Request packet */

typedef TLR_EMPTY_PACKET_T PNS_UNREG_FATAL_ERROR_CALLBACK_REQ_T;

Packet Description

structure PNS_UNREG_FATAL_ERROR_CALLBACK_ REQ T Type: Request

Area | Variable | Type ‘ Value / Range | Description

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrcld UINT32 [0...2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 |0 Packet data length in bytes

ulld UINT32 [0...2%2-1 Packet identification, untouched

ulSta UINT32 |0 Status not used for requests. Set to zero.

ulCmd UINT32 | Ox1FDE PNS_UNREGISTER_FATAL_ERROR_CALLBACK_REQ -
Command

ulExt UINT32 |0 Extension, untouched

ulRout UINT32 |0 Routing, do not touch

Table 40: PNS_UNREG_FATAL_ERROR_CALLBACK_REQ_T - Unregister Fatal Error Callback Request

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 85/390

7.1.9.2 Unregister Fatal Error Callback Confirmation
Using this packet the stack informs the application about the success of unregistering the fatal
error callback.

Packet Structure Reference

/* Confirmation packet */
typedef TLR_EMPTY_PACKET T PNS_UNREG_FATAL_ERROR_CALLBACK_CNF_T;

Packet Description

structure PNS_UNREG_FATAL_ERROR_CALLBACK_CNF_T Type: Confirmation

Area | Variable | Type ‘ Value / Range | Description

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrcld UINT32 [0...2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 |0 Packet data length in bytes

ulld UINT32 [0...2%2-1 Packet identification, untouched

ulSta UINT32 See below.

ulCmd UINT32 | Ox1FDF PNS_UNREGISTER_FATAL_ERROR_CALLBACK_CNF -
Command

ulExt UINT32 |0 Extension, untouched

ulRout UINT32 |x Routing, do not touch

Table 41: PNS_UNREG_FATAL_ERROR_CALLBACK_CNF_T - Unregister Fatal Error Callback Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 86/390
7.1.10 Set Port MAC Address Service

Using this service the user application can set the two MAC addresses which are necessary for
working with LLDP (Link Layer Discovery Protocol).

This protocol is part of the stack and cannot be disabled. It requires a different MAC-address for
each single Ethernet port of the hardware. Therefore a hardware with 2 Ethernet ports needs at
least 3 MAC-addresses.

The well defined default MAC-addresses for a netX with MAC-address from the Hilscher address
range are "Chassis MAC-address +1” and “Chassis MAC-address +2” for the 2 Ethernet ports".

If for any reason this rule is not acceptable, the user can force the stack to use any other Port
MAC-address for LLDP.

Note: If the user application wants to set the “Chassis MAC-address” the user
application has to use the “Set MAC Address” (RCX_SET_MAC_ADDR_REQ) service
(see section “4.16 Set MAC Address” of reference [3]).

7.1.10.1 Set Port MAC Address Request

This packet is optional. The two addresses are generated by default by simply adding the values 1
respectively 2 to the Chassis MAC address.

Important: This packet must be sent prior to the Set Configuration Service packet, otherwise it will
be rejected and the former choice of the Port MAC address will be fixed.

Important: This packet may be sent to the stack either once or never at all. Multiple use of this
packet is not allowed.

Packet Structure Reference
typedef TLR_UINT8 PORT_MAC_ADDR_T[6];

typedef struct PNS_IF _SET PORT_MAC_REQ DATA Ttag

PORT_MAC_ADDR_T atPortMacAddr[2];
} PNS_IF_SET_PORT_MAC_REQ DATA T;

typedef struct PNS_IF _SET PORT_MAC_REQ Ttag
TLR_PACKET HEADER_T tHead;

PNS_IF_SET_PORT MAC_REQ DATA T tData;
} PNS_IF_SET_PORT MAC_REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

87/390

Packet Description

structure PNS_IF_SET_PORT_MAC_REQ T

Type: Request

Area | Variable Type Value / | Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 0 ... 232 | Source End Point Identifier, specifying the origin of the
-1 packet inside the Source Process.
ulLen UINT32 12 Packet data length in bytes
ulld UINT32 0 ... 232 | Packet identification as unique number generated by the
-1 source process of the packet
ulSta UINT32 Status not used for request.
ulCmd UINT32 Ox1FEO | PNS_IF_SET_PORT_MAC_REQ- Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch

Data

structure PNS_1F_!

SET_PORT_MAC_REQ DATA T

atPortMacAddr[2]

PORT_MAC_ADDR_T

Structure containing the two port MAC addresses.

atPortMacAddr[0] stores MAC-address for Port 0,
atPortMacAddr[1] stores MAC-address for Port .

Table 42: PNS_IF_SET_PORT_MAC_REQ_T - Set Port MAC Address Request

7.1.10.2

Set Port MAC Address Confirmation

The stack informs the application about the success or failure of setting the port MAC address.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T

PNS_IF_SET_PORT_MAC_CNF_T;

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 88/390

Packet Description

structure PNS_IF_SET_PORT_MAC_CNF_T Type: Confirmation

Area | Variable | Type ‘ Value / Range | Description

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 [0...2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 |0 Packet data length in bytes

ulld UINT32 [0..2%2-1 Packet identification, untouched

ulSta UINT32 See below.

ulCmd UINT32 | Ox1FE1 PNS_IF_SET_PORT_MAC_CNF - Command

ulExt UINT32 |0 Extension, untouched

ulRout UINT32 |x Routing, do not touch

Table 43: PNS_IF_SET_PORT_MAC_CNF_T - Set Port MAC Address Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 89/390

7.1.11 Set OEM Parameters Service

For some special needs (like 1&M) of the user this request is used. It is designed for multiple
purposes and may be extended in the future.

The stack is able to answer to Information and Maintenance Requests. Normally well defined
Hilscher default values are used. If this is not sufficient for the application the application can
change this default values using this service.

Note:
. This service has to be used before using the Set Configuration Service to configure the
stack if stack is not configured with database.

7.1.11.1 Set OEM Parameters Request

Using this packet the application can hand over some parameter values to the stack e.g. to use for
handling 1&MO0 requests.

0 Important:

This packet must be sent prior to the Set Configuration Service packet if stack is not
configured with database, otherwise it will be rejected and the well defined Hilscher
default values will be used.

0 Important:
L Each subtype of this packet may be sent to the stack either once or never at all.
Multiple use of the same subtype for this packet is not allowed.

Packet Structure Reference

#define PNS_IF_SET OEM_PARAMETERS TYPE_1 0x01
#define PNS_IF_SET OEM_PARAMETERS_TYPE_2 0x02
#define PNS_IF_SET OEM_PARAMETERS_TYPE_3 0x03
#define PNS_IF_SET OEM_PARAMETERS_TYPE_ 4 0x04
#define PNS_IF_SET OEM_PARAMETERS_TYPE_5 0x05
#define PNS_IF_SET OEM_PARAMETERS_TYPE_6 0x06
#define PNS_IF_SET OEM_PARAMETERS TYPE_ 7 0x07
#define PNS_IF_SET OEM_PARAMETERS_TYPE_8 0x08
#define PNS_IF_SET OEM_PARAMETERS_TYPE_9 0x09
#define PNS_IF_SET OEM_PARAMETERS_TYPE_10 OXO0A

typedef struct PNS_IF_SET_OEM_PARAMETERS_TYPE_1_Ttag

TLR_UINT8 abSerialNumber[16];
TLR_UINT16 usProfileld;
TLR_UINT16 usRevisionCounter;
TLR_UINT16 usProfileSpecificType;

} PNS_IF_SET _OEM_PARAMETERS TYPE_1 T;

typedef struct PNS_IF_SET_OEM_PARAMETERS TYPE 2 Ttag

TLR_UINT8 abSerialNumber[16];
} PNS_IF_SET_OEM_PARAMETERS_TYPE_2 T;

typedef struct PNS_IF_SET_OEM_PARAMETERS_TYPE_3_Ttag
{

TLR_UINT32 ulTimeout;
} PNS_IF_SET OEM _PARAMETERS TYPE 3 T;

typedef struct PNS_IF_SET_OEM PARAMETERS_TYPE_4_Ttag
TLR_UINT16 usSystemNamelLen;

TLR_UINT8 abSystemName[255];
3} PNS_IF_SET_OEM_PARAMETERS_TYPE_4 T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

90/390

typedef struct PNS_IF_SET_OEM_PARAMETERS TYPE 5 Ttag

TLR_UINT32 ul IMFlag;

} PNS_IF_SET OEM PARAMETERS TYPE_ 5 T;

typedef struct PNS_IF_SET_OEM_PARAMETERS_TYPE_6_Ttag
{

}

TLR_UINT16 uslIRTCycleCounterOffset;
PNS_IF_SET_OEM_PARAMETERS_TYPE_6 _T;

typedef struct PNS_IF_SET_OEM_PARAMETERS TYPE_ 7 Ttag

TLR_BOOLEAN32 fUseOlfLinkStateCommandCode;

} PNS_IF_SET OEM_PARAMETERS TYPE 7 T;

#define PNS_IF_STACK_HANDLE_IM_1 0x01
#define PNS_IF_STACK_HANDLE_IM_2 0x02
#define PNS_IF_STACK_HANDLE_IM_3 0x04
#define PNS_IF_STACK_HANDLE_IM_4 0x08
#define PNS_IF_STACK_HANDLE_IM 5 0x10

typedef struct PNS_IF_SET_OEM_PARAMETERS TYPE 8 Ttag

}

typedef PNS_IF_IM5_DATA T PNS_IF_SET_OEM_PARAMETERS_TYPE 9 T;

typedef _ PACKED_PRE struct PNS_IF_SET_OEM_PARAMETERS_TYPE_10 Ttag

}

TLR_BOOLEAN32 fDisableFirmwarelMHandling;
PNS_IF_SET_OEM_PARAMETERS_TYPE_8_T;

uint32_t fSupportProfiEnergyFunction;

__PACKED_POST PNS_IF_SET OEM_PARAMETERS_TYPE_10 T;

typedef struct PNS_IF_SET_OEM_PARAMETERS_REQ DATA_ Ttag

}

TLR_UINT32 ulParameterType;
PNS_IF_SET_OEM_PARAMETERS_REQ_DATA_T;

typedef union PNS_IF_SET_OEM_PARAMETERS_UNION_Ttag

{

}

PNS_IF_SET_OEM_PARAMETERS TYPE_1_ T tTypelParam;
PNS_IF_SET_OEM_PARAMETERS_TYPE 2 T tType2Param;
PNS_IF_SET_OEM_PARAMETERS_TYPE_3_T tType3Paranm;

PNS_IF_SET_OEM_PARAMETERS_TYPE 4 T tType4Param;

PNS_IF_SET_OEM_PARAMETERS_TYPE 5 T tType5Param;
PNS_IF_SET_OEM_PARAMETERS_TYPE 6_T tType6Param;
PNS_IF_SET_OEM_PARAMETERS_TYPE 7 _T tType7Param;
PNS_IF_SET_OEM_PARAMETERS_TYPE 8 T tType8Param;
PNS_IF_SET_OEM_PARAMETERS_TYPE 9 T tType9Param;
PNS_IF_SET OEM_PARAMETERS_TYPE_10 T tTypelOParanm;

PNS_IF_SET_OEM_PARAMETERS_UNION_T;

typedef struct PNS_IF _SET _OEM_PARAMETERS REQ Ttag

}

TLR_PACKET_HEADER_T tHead;
PNS_IF_SET_OEM_PARAMETERS_REQ DATA_T tData;
PNS_IF_SET_OEM_PARAMETERS_UNION_T tParam;

PNS_IF_SET OEM_PARAMETERS REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 91/390

Packet Description

structure PNS_I1F_SET_OEM_PARAMETERS_REQ_T Type: Request

Area Variable | Type |Va|ue / Range | Description

Head structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 |0..2%-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ulLen UINT32 |4+n Packet data length in bytes. n depends on the parameter
type contained in the packet.

ulld UINT32 |0..2%2-1 Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 Status not used for request.

ulCmd UINT32 | Ox1FES8 PNS_IF_SET_OEM_PARAMETERS_REQ-Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 |x Routing, do not touch

Data |structure PNS_IF_SET_OEM_PARAMETERS_REQ DATA T

ulParamType UINT32 PNS_IF_SET_OEM_PARAMETERS_TYPE_1, ...,
PNS_IF_SET _OEM_PARAMETERS_TYPE_8

This parameter specifies which structure follows. See below.
union PNS_IF_SET_OEM_PARAMETERS_UNION_T

Depending on the chosen Paramtype the corresponding
structure shall be used here. See below.

Table 44: PNS_IF_SET_OEM_PARAMETERS_REQ_T - Set OEM Parameters Request

Coding for ulParamType = PNS_IF_SET _OEM_PARAMETERS TYPE 1

If ulParamType is set to PNS_IF_SET_OEM_PARAMETERS TYPE_1 the structure tTypelParam
of PNS_IF_SET_OEM_PARAMETERS_UNION_T shall be used. It is defined as follows:

structure PNS_IF_SET_OEM_PARAMETERS_TYPE 1 T

Area Variable Type Value / Description
Range

abSerialNumber UINT8[16] The serial number to be used for the 1&M 0 responses.
The serial number shall be left aligned and space (hex
0x20) padded.

usProfileld UINT16 The Profileld to be used for I&M responses.
usRevisionCounter UINT16 Revision counter to be used for I&M responses.
usProfileSpecificType | UINT16 The ProfileSpecificType to be used for I&M responses.

Table 45: PNS_IF_SET_OEM_PARAMETERS_TYPE_1_T - Set OEM Parameters for ulParamType =1

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 92/390

Coding for ulParamType = PNS_IF_SET_OEM_PARAMETERS_TYPE_2

If ulParamType is set to PNS_IF_SET_OEM_PARAMETERS TYPE_2 the structure tType2Param
of PNS_IF_SET_OEM_PARAMETERS_UNION_T shall be used. It is defined as follows:

structure PNS_IF_SET_OEM_PARAMETERS_TYPE 2 T

Area | Variable Type Value / Description
Range
abSerialNumber |UINT8[16] The serial number to be used for 1&M 0 responses. The
serial number shall be left aligned and space (hex 0x20)
padded.

Table 46: PNS_IF_SET_OEM_PARAMETERS_TYPE_2_ T - Set OEM Parameters for ulParamType = 2

Coding for ulParamType = PNS_IF_SET_OEM_PARAMETERS_TYPE_3

If ulParamType is set to PNS_1F_SET_OEM_PARAMETERS_TYPE_3 the structure tType3Param
of PNS_IF_SET OEM_PARAMETERS_UNION_T shall be used. It is defined as follows:

structure PNS_IF_SET_OEM_PARAMETERS_TYPE_3 T

Area | Variable Type Value / Range | Description
ulTimeout UINT32 |0x00000BB8 The timeout (in milliseconds) specifies how long the stack
(3000) ... should wait for application packets. The value can be 3000 ms
or higher.

Table 47: PNS_IF_SET_OEM_PARAMETERS_TYPE_3_T - Set OEM Parameters for ulParamType = 3

Coding for ulParamType = PNS_IF_SET _OEM_PARAMETERS_TYPE 4

_) Note:
. Parametertype 4 is deprecated. Do not use this setting.
This PROFINET stack is an implementation with RFC 3418 support, which is SNMP
MIB2 and uses the sysName object for the SystemName.
If ulParamType is set to PNS_IF_SET_OEM_PARAMETERS_TYPE_4 the structure tType4Param
of PNS_IF_SET_OEM_PARAMETERS_UNION_T shall be used. It is defined as follows:

structure PNS_IF_SET_OEM_PARAMETERS_TYPE 4 T

Area | Variable Type Value / Description
Range
usSystemNamelLen | UINT16 0..255 Length of System Name
abSystemName UINT8[255] The System Name is used to identify the name of the local
system (LLDP services).

Table 48: PNS_IF_SET_OEM_PARAMETERS_TYPE_4 T - Set OEM Parameters for ulParamType = 4

Explanation: The LLDP TLV SystemName has a direct connection to the SNMP MIB2 field
"sysName". According to the LLDP specification (IEEE802.1AB): "The system name field shall
contain an alpha-numeric string that indicates the system’s administratively assigned name. The
system name should be the system’s fully qualified domain name. If implementations support IETF
RFC 3418, the sysName object should be used for this field."

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

93/390

Coding for ulParamType = PNS_IF_SET_OEM_PARAMETERS_TYPE_5

If ulParamType is set to PNS_IF_SET_OEM_PARAMETERS TYPE_5 the structure tType5Param
of PNS_IF_SET_OEM_PARAMETERS_UNION_T shall be used. It is defined as follows:

structure PNS_IF_SET_OEM_PARAMETERS_TYPE_5_T

Area

Variable

Type Value / Range

Description

ullMFlag

UINT32 | 0x07, OxOF,
0x17, Ox1F
(Default value
0x0F)

A bitmask used to indicate which kind of I1&M records should
be supported by the firmware. Each bit corresponds to an 1&M
data set starting at I&ML1 If a flag is set, the corresponding I1&M
record is enabled and will be either handled by the stack
internally or forwarded to the application depending on system
flags used in Set Configuration Service. Default value for this
parameter is OXOF meaning I&M1 to I&M4 is activated.

Table 49: PNS_IF_SET_OEM_PARAMETERS_TYPE_5_T — Set OEM Parameters for ulParamType =5

Coding of ul IMFlag

Bit No Flag Define/ Desired Behavior

DO If this flag is set using PNS_IF_STACK_HANDLE_ IM_1, the stack will enable the I1&M1 Record.
This record shall be always enabled.

D1 If this flag is set using PNS_IF_STACK_HANDLE_ IM_2, the stack will enable the I1&M2 Record.
This record shall be always enabled.

D2 If this flag is set using PNS_1F_STACK_HANDLE_ IM_3, the stack will enable the I1&M3 Record.
This record shall be always enabled.

D3 If this flag is set using PNS_IF_STACK_HANDLE_ IM_4, the stack will enable the 1&M4 Record.

D4 If this flag is set using PNS_1F_STACK_HANDLE_ IM_5, the stack will enable the I1&M5 Record.

D5 - D15 | Reserved, set to zero

Table 50: Coding of ul IMFlag

Coding for ulParamType = PNS_IF_SET_OEM_PARAMETERS_TYPE_6

If ulParamType is set to PNS_IF_SET_OEM_PARAMETERS_TYPE_6 the structure tType6Param
of PNS_IF_SET OEM_PARAMETERS_UNION_T shall be used. It is defined as follows:

structure PNS_IF_SET_OEM_PARAMETERS_TYPE_6_T

Area| Variable Type Value / Description
Range
usIRTCycleCounterOffset | UINT16 | O.. The offset in DPM / 10 Image where the IRT cycle counter is

copied to.
Note: Only available if stack has an RTC3-AR established!

Table 51: PNS_IF_SET_OEM_PARAMETERS_TYPE_6_T - Set OEM Parameters for ulParamType = 6

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

http://www.dict.cc/englisch-deutsch/corresponding.html

Packet Interface 94/390

Coding for ulParamType = PNS_IF_SET_OEM_PARAMETERS_TYPE_7

If ulParamType is set to PNS_IF_SET_OEM_PARAMETERS TYPE_7 the structure tType7Param
of PNS_IF_SET_OEM_PARAMETERS_UNION_T shall be used. It is defined as follows:

structure PNS_IF_SET_OEM_PARAMETERS_TYPE_7_T

Area| Variable Type Value |Description
/
Range
fUseOlfLinkStateCommandCode | TLR_BOOLEAN32 | 0 Stack shall use
1 RCX_LINK_STATUS_CHANGE_IND
Stack shall use
PNS_IF_LINK_STATE_CHANGE_IND

Table 52: PNS_IF_SET_OEM_PARAMETERS_TYPE_7_T - Set OEM Parameters for ulParamType =7

Coding for ulParamType = PNS_IF_SET_OEM_PARAMETERS_TYPE_8

_) Note:

. This service is only intended to be used in case the stack is configured with a database
file. If the stack is configured with the Set Configuration Service 1&M handling can be
influenced by other means, see ulSystemFlags in Set Configuration Request (6.1.5.1)
packet.

Note:
This ulParamType is supported starting with stack version V3.10.0.7.

If ulParamType is set to PNS_IF_SET OEM_PARAMETERS TYPE_8 the structure tType8Param
of PNS_IF_SET OEM_PARAMETERS UNION_T shall be used. It is defined as follows:

structure PNS_IF_SET_OEM_PARAMETERS_TYPE_8 T

Area| Variable Type Value | Description
/
Range
fDisableFirmwarelMHandling TLR_BOOLEAN32 |0 Stack shall handle 1&M data
1 Application shall handle 1&M data

Table 53: PNS_IF_OEM_PARAMETERS_TYPE_8 T Set OEM Parameters for ulParamType = 8

Coding for ulParamType = PNS_IF_SET OEM_PARAMETERS_TYPE_9

If ulParamType is set to PNS_IF_SET_OEM_PARAMETERS TYPE_9 the structure tType9Param
of PNS_IF_SET_OEM_PARAMETERS_UNION_T shall be used. It is defined as described in Read
I&M Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 95/390

Coding for ulParamType = PNS_IF_SET _OEM_PARAMETERS _TYPE_10

0 Important:
A o This ulParamType can only be used if bus communication is deactivated (BUS OFF).
Note:

This ulParamType is supported starting with stack version vV3.12.0.0

If ulParamType is set to PNS_IF_SET_OEM_PARAMETERS_TYPE_ 10 the structure
tTypelOParam of PNS_IF_SET_OEM_PARAMETERS _UNION_T shall be used. It is defined as
follows:

structure PNS_IF_SET_OEM_PARAMETERS_TYPE_10_T
Area| Variable Type Value | Description
/
Range
fSupportProfiEnergyFunction TLR_BOOLEAN32 |0 ProfiEnergy not suuported
1 Stack supports ProfiEnergy functionality

Table 54: PNS_IF_OEM_PARAMETERS_TYPE_10_T Set OEM Parameters for ulParamType = 10

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

96/390

7.1.11.2

Set OEM Parameters Confirmation

The stack informs the application about the success or failure of setting the OEM parameters.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T

Packet Description

PNS_IF_SET_OEM_PARAMETERS_CNF_T;

structure PNS_IF_SET_OEM_PARAMETERS_CNF_T

Type: Confirmation

Area Variable ‘ Type | Value / Range Description
Head structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 [0..2%2-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.
ulLen UINT32 |0 Packet data length in bytes
ulld UINT32 [0..2%2-1 Packet identification, untouched
ulSta UINT32 See below.
ulCmd UINT32 | Ox1FE9 PNS_IF_SET_OEM_PARAMETERS_CNF - Command
ulExt UINT32 |0 Extension, untouched
ulRout UINT32 |Xx Routing, do not touch

Table 55: PNS_IF_SET_OEM_PARAMETERS_CNF_T - Set OEM Parameters Confirmation

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 97/390

7.1.12 Load Remanent Data Service

Using this service the user can hand over the required remanent data to the stack. This service
has to be used if the application handles the storing of remanent data which is the case when bit
D14 is set in the system flags of the Set Configuration Request.

Note: The packet may be rejected by the stack with error code “invalid length” or “invalid
parameter version” after a firmware update. The remanent data contains a fingerprint of
the firmware version and its content may change in future versions of the stack. To avoid
problems with invalid parameters this security check was implemented.

In this case the application shall continue with startup and ignore the return value.

7.1.12.1 Load Remanent Data Request

The user can hand over the remanent data needed by the stack with this packet. The stack will
check the data and, if it is correct, this data will be used.

If the stack is accessed via Dual Port Memory it may be necessary for the application to fragment
the request packet. This happens due to the limited size of the mailbox. How the fragmented
service shall be handled by the application and the stack is described in reference [3].

i ' ~ Important: This packet must be sent prior to the Set Configuration Service packet,
' otherwise this packet will be rejected and the default values will be used.

.' ~ Important: This packet may be sent to the stack either once or never at all. Multiple use
of this packet is not allowed.

Packet Structure Reference
typedef struct
/* this is only the first byte, many others may follow */

TLR_UINT8 abData[1];
} PNS_IF_LOAD_REMANENT DATA REQ DATA T;:

typedef struct
TLR_PACKET HEADER_T tHead;

PNS_IF_LOAD_REMANENT DATA REQ DATA T tData;
} PNS_IF_LOAD_REMANENT DATA REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 98/390

Packet Description

structure PNS_1F_LOAD_REMANENT_DATA_REQ_T Type: Request

Area Variable | Type ‘ Value / Range Description

Head structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ulLen UINT32 |[1+n Packet data length in bytes.

ulld UINT32 |0..2%2-1 Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 Status not used for request.

ulCmd UINT32 | Ox1FEC PNS_1F_LOAD_REMANENT_DATA_REQ- Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons. If

the fragmented service is used see reference [3].

ulRout UINT32 X Routing, do not touch

Data |structure PNS_IF_LOAD_REMANENT DATA REQ DATA T

abData[1] UINT8 The remanent data which was reported by the stack. This is
only the first byte as a place holder. All remaining bytes have
to follow this one.

Table 56: PNS_IF_LOAD_REMANENT_DATA_REQ_T - Load Remanent Data Request

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

99/390

7.1.12.2 Load Remanent Data Confirmation

The stack informs the application about the success or failure of restoring the remanent data.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T

Packet Description

PNS_IF_LOAD_REMANENT DATA CNF_T;

structure PNS_IF_LOAD_REMANENT DATA CNF_T

Type: Confirmation

Area Variable | Type ‘ Value / Range Description
Head structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.
ullLen UINT32 |0 Packet data length in bytes
ulld UINT32 |0..2%2-1 Packet identification, untouched
ulSta UINT32 See below.
ulCmd UINT32 | Ox1FED PNS_I1F_LOAD_REMANENT_DATA_CNF - Command
ulExt UINT32 |0 Extension, untouched
ulRout UINT32 |x Routing, do not touch

Table 57: PNS_IF_LOAD_REMANENT_DATA_CNF_T - Load Remanent Data Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 100/390
7.1.13 Configuration Delete Service

Using the Configuration Delete Service the user application can delete the current configuration.
This service will not delete configuration files like SYCON.net database or iniBatch files.

Note: If the stack performs cyclic data exchange, the configuration will be deleted,
however the cyclic data exchange will not be interrupted and a valid data exchange is
still assured.

7.1.13.1 Configuration Delete Request

This service is described in reference [3].

7.1.13.2 Configuration Delete Confirmation

This service is described in reference [3].

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 101/390

7.1.14 Set I0-Image Service

This service has to be used if the user application uses the callback interface for accessing the
cyclic I/0-data. The service request will provide the PROFINET 10-Device stack with pointers to
the consumer and provider data images and the user application’s event callback. In return the
service’s confirmation will provide the user application with pointers to update input, update output
and update extended status block callbacks. This request is essential for any user application
running locally on the netX and not using the Shared memory interface. It has to be issued before
using the Set Configuration Service. See also section 6.1.1 which contains an example.

Note:
. Furthermore this service does not apply if the stack is used as loadable firmware or
used in conjunction with Shared memory Interface.

7.1.14.1 Set I0-Image Request

Packet Structure Reference

/* uiBvents */

#define PNS_IF_10_EVENT RESERVED 0x00000000
#define PNS_IF_10_EVENT NEW_FRAME 0x00000001
#define PNS_IF_I0_EVENT CONSUMER_UPDATE_REQUIRED 0x00000002
#define PNS_IF_10_EVENT PROVIDER_UPDATE_REQUIRED 0x00000003
#define PNS_IF_I0_EVENT FRAME_SENT 0x00000004
#define PNS_IF_I0_EVENT CONSUMER_UPDATE_DONE 0x00000005
#define PNS_IF_I0_EVENT_PROVIDER_UPDATE_DONE 0x00000006

typedef TLR_RESULT (*PNS_IF_IOEVENT_HANDLER _CLB_T) (
TLR_HANDLE hUserParam,
TLR_UINT uiEvents

):

typedef struct PNS_IF _SET I0IMAGE_REQ DATA Ttag

{
TLR_UINT32 ulConslmageSize;
TLR_UINT32 ulProvimageSize;
TLR_UINT8* pbConslmage;
TLR_UINT8* pbProvimage;
PNS_I1F_10EVENT_HANDLER CLB_ T pfnEventHandler;
TLR_HANDLE hUserParam;

} PNS_IF_SET_10IMAGE_REQ DATA T;
typedef struct PNS_IF _SET 10IMAGE_REQ Ttag
{
TLR_PACKET HEADER_T tHead;

PNS_IF_SET_I0IMAGE_REQ DATA T tData;
} PNS_IF_SET_IOIMAGE_REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

102/390

Packet Description

structure PNS_IF_SET_I0IMAGE_REQ T

Type: Request

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF
task process queue
ulSrc UINT32 Source Queue-Handle of application
task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not in
use, set to zero for compatibility
reasons.
ulSrclid UINT32 0 ... 2%2-1 | Source End Point Identifier, specifying
the origin of the packet inside the
Source Process.
ulLen UINT32 24 Packet data length in bytes.
ulld UINT32 0 ... 232 -1 | Packet identification as unique number
generated by the source process of the
packet
ulSta UINT32 Status not used for request.
ulCmd UINT32 Ox1FFO PNS_IF_SET_I0IMAGE_REQ-
Command
ulExt UINT32 0 Extension not in use, set to zero for
compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_IF_SET_I10IMAGE_REQ DATA_T
ulConsimageSize | UINT32 0 ... 216 -1 | The size of the consumer data image.
ulProvimageSize | UINT32 0 ... 216 -1 | The size of the provider data image.
pbConsimage UINT8* Pointer to consumer data image. Shall
point to a memory area provided by the
user’s application where the incoming
consumer data shall be copied to by the
stack. See section 6.1.1 for further
information
pbProvimage UINT8* Pointer to provider data image. Shall

point to a memory area provided by the
user’s application where the outgoing
provider data shall be taken from by the
stack. See section 6.1.1 for further
information

pfnEventHandler

PNS_IF_IOEVENT_HANDLER_CLB_T

Pointer to the user’s application event
callback function to be called by the
stack for various events.

hUserParam

HANDLE

Will be passed as first parameter to the
user’s event callback function. Typically
the user applications resource
parameter.

Table 58: PNS_IF_SET_I0IMAGE_REQ_T — Set I0-Image Request

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

103/390

7.1.14.2

Packet Structure Reference

Set 10-Image Confirmation

typedef TLR_RESULT (*PNS_IF_UPDATE_IOIMAGE_CLB_T) (

TLR_HANDLE hUserParam,
TLR_UINT uiTimeout,
TLR_UINT uiReservedl,
TLR_UINT uiReserved2

):

typedef TLR_RESULT (*PNS_IF_UPDATE_EXTSTA_BLOCK_CLB_T)(

TLR_HANDLE hUserParam,

PNS_IF_EXTENDED_STATUS_BLOCK_T* ptExtSta,

TLR_UINT uiOffsetCons,
TLR_UINT uiOffsetProv

):

typedef struct PNS_IF_SET_I10IMAGE_CNF_DATA Ttag

TLR_HANDLE

PNS_IF_UPDATE_IOIMAGE_CLB T
PNS_IF_UPDATE_IOIMAGE_CLB T
PNS_IF_UPDATE_EXTSTA BLOCK CLB T pfnUpdateExtStaBlock;

} PNS_IF_SET_IOIMAGE_CNF_DATA T;

hCal IbackParam;
pfnUpdateConsumer Image;
pfnUpdateProviderimage;

typedef struct PNS_IF _SET 10IMAGE_CNF_Ttag

TLR_PACKET_HEADER_T

PNS_IF_SET_I0OIMAGE_CNF_DATA T

3 PNS_IF_SET_IOIMAGE_CNF_T;

Packet Description

tHead;
tData;

structure PNS_IF_SET_I0IMAGE_CNF_T

Type: Request

Area | Variable Type Value / | Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of
PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of
application task process
queue
ulDestld UINT32 0 Destination End Point
Identifier. Not in use, set to
zero for compatibility reasons.
ulSrclid UINT32 0 ... 2%2 | Source End Point Identifier,
-1 specifying the origin of the
packet inside the Source
Process.
ulLen UINT32 16 Packet data length in bytes.
ulld UINT32 0 ... 22 | Packet identification as unique
-1 number generated by the
source process of the packet
ulSta UINT32 See below
ulCmd UINT32 Ox1FF1 | PNS_IF_SET_IOIMAGE_CNF-
Command
ulExt UINT32 0 Extension not in use, set to
zero for compatibility reasons

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

104/390

structure PNS_IF_SET_I0IMAGE_CNF_T

Type: Request

Area | Variable Type Value / | Description
Range
ulRout UINT32 X Routing, do not touch
Data | structure PNS_IF_SET_I0IMAGE_CNF_DATA_T

hCallbackParam

HANDLE

This handle shall be passed
by the user’s application as
first parameter to the callback
functions.

pfnUpdateConsumerimage

PNS_IF_UPDATE_IOIMAGE_CLB_T

Pointer to the stack’s update
consumer callback function.
This callback shall be used by
the user’s application to
update its consumer data
image with newest cyclic data.

pfnUpdateProviderimage

PNS_IF_UPDATE_IOIMAGE_CLB_T

Pointer to the stack’s update
provider callback function.
This callback shall be used by
the user’s application to
instruct the stack to update
the cyclic data from the
provider data image.

pfnUpdateExtStaBlock

PNS_IF_UPDATE_EXTSTA BLOCK_CLB_T

Pointer to the stack’s update
extended status block
callback function. This
callback may be used by the
user’s application to fill an
extended status block
structure.

Table 59: PNS_IF_SET_I0IMAGE_CNF_T — Set 10-Image Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

105/390

7.1.15 Set IOXS Config Service

This service has to be used by the user application to enable reading/writing data states from/to
the consumer/provider data image. When enabling this functionality, the stack will copy the
provider data states of consumer data into the consumer data image and take the provider data
states of provider data from provider data image. In this case the user application is responsible for
setting these states appropriate. For a detailed description of the structure of the data state block in
the input/output image, refer to the Dual Port Memory interface manual. See also section 6.1.2
which contains an example.

7.1.15.1

Set IOXS Config Request

Packet Structure Reference
typedef enum PNS_IF_I0PS_MODE_Etag

PNS_IF_I0PS_DISABLED = 0,
PNS_IF_I0PS_BITWISE,
PNS_IF_IOPS_BYTEWISE,

} PNS_IF_I0PS_MODE_E;

typedef enum PNS_IF_10CS_MODE_Etag

PNS_IF_10CS_DISABLED = 0,
PNS_IF_10CS_BITWISE,
PNS_IF_10CS_BYTEWISE,

} PNS_IF_10CS_MODE_E;

typedef struct PNS_IF _SET I10XS_CONFIG_DATA Ttag

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32

ul 10PSMode;
ulConslImagel OPSOffset;
ulReservedl;
ulProvimagelOPSOffset;

ul 10CSMode ;
ulConslmagel0CSOffset;
ullReserved2;
ulProvimagel OCSOffset;

3 PNS_IF_SET_I0XS_CONFIG_DATA T;

typedef struct PNS_IF_SET 10XS_CONFIG_REQ Ttag

TLR_PACKET_HEADER_T tHead;
PNS_IF_SET_I0XS_CONFIG_DATA T tData;
3 PNS_IF_SET_IOXS_CONFIG_REQ T ;

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

106/390

Packet Description

structure PNS_IF_SET_10XS_CONFIG_REQ T

Type: Request

Area Variable Type Value / Description
Range
Head structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32|0...2%2-1 | Source End Point Identifier, specifying the origin of the
packet inside the Source Process.
ulLen UINT32 | 32 Packet data length in bytes.
ulld UINT32|0...2%2-1 | Packet identification as unique number generated by the
source process of the packet
ulSta UINT32 Status not used for request.
ulCmd UINT32 | Ox1FF2 PNS_I1F_SET_10XS_CONFIG_REQ- Command
ulExt UINT32 | 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 | x Routing, do not touch
Data structure PNS_1F_SET_10XS_CONFIG_DATA_T
ullOPSMode UINT32(0...2 Desired encoding of the IOPS states. Either disabled, bit
list (valid invalid) or byte list (complete IOPS)
ulConsimagelOPSOffset | UINT32 | 0 ... 216 -1 | The offset where the consumer data provider state block
shall start in the consumer data image. The offset is
relative to the beginning of the consumer data image.
See section 6.1.2 for further information
ulReservedl UINT32 |0 Reserved. Set to zero for compatibility reasons.
ulProvimagelOPSOffset | UINT32 | 0 ... 216 -1 | The offset where the provider data provider state block
shall start in the provider data image. The offset is relative
to the beginning of the provider data image.
See section 6.1.2 for further information
ullOCSMode UINT32|0....2 Desired encoding of the IOCS states. Either disabled, bit
list (valid invalid) or byte list (complete IOCS)
ulConsimagelOCSOffset | UINT32 | 0 ... 216 -10 | The offset where the consumer data consumer state block
shall start in the consumer data image. The offset is
relative to the beginning of the consumer data image.
See section 6.1.2 for further information
ulReserved2 UINT32 | 0 Reserved. Set to zero for compatibility reasons.
ulProvimagelOCSOffset | UINT32 | 0... 216 -1 | The offset where the provider data consumer state block

shall start in the provider data image. The offset is relative
to the beginning of the provider data image.

See section 6.1.2 for further information

Table 60: PNS_IF_SET_I10XS_CONFIG_REQ_T — Set IOXS Config Request

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 107/390

7.1.15.2 Set IOXS Config Confirmation

Packet Structure Reference
typedef struct PNS_IF_SET_I10XS_CONFIG_CNF_Ttag
{

TLR_PACKET HEADER T tHead;
} PNS_IF_SET_I0XS_CONFIG_CNF T;

Packet Description

structure PNS_I1F_SET_10XS_CONFIG_CNF_T Type: Confirmation

Area Variable | Type ‘ Value / Range Description

Head structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ulLen UINT32 |0 Packet data length in bytes.

ulld UINT32 |0..2%2-1 Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 See below.

ulCmd UINT32 | Ox1FF3 PNS_IF_SET_10XS_CONFIG_CNF- Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 |x Routing, do not touch

Table 61: PNS_IF_SET_I10XS_CONFIG_CNF_T — Set IOXS Config Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 108/390

7.1.16 Configure Signal Service

The following section only applies if the stack was configured to use little endian byte order for
cyclic process data image. This request shall be used to provide the stack with information about
the data structure of the submodules.

7.1.16.1 Configure Signal Request

The request packet has to be sent to the stack to provide it with information about the data
structure. This shall be done after the submodule has plugged. The submodule will not be used for
data exchange until valid structure data has been provided. The request has to be used for each
direction separately.

Packet Structure Reference
typedef enum

10_SIGNALS_TYPE_BIT = 0, /* 0 */
10_SIGNALS_TYPE_BOOLEAN, /5 1%/
10_SIGNALS_TYPE_BYTE, /* 2%/
10_SIGNALS_TYPE_SIGNEDS, /* 3 */
10_SIGNALS_TYPE_UNSIGNEDS, /* 4>/
10_SIGNALS_TYPE_WORD, /* 5 */
10_SIGNALS_TYPE_SIGNED16, /* 6 */
10_SIGNALS_TYPE_UNSIGNED16, /5 7%/
10_SIGNALS_TYPE_SIGNED24, /* 8 */
10_SIGNALS_TYPE_UNSIGNED24, /* 9 */
10_SIGNALS_TYPE_DWORD, /* 10 */
10_SIGNALS_TYPE_SIGNED32, /* 11 */
10_SIGNALS_TYPE_UNSIGNED32, /% 12 */
10_SIGNALS_TYPE_SIGNED40, /* 13 */
10_SIGNALS_TYPE_UNSIGNED40, /* 14 */
10_SIGNALS_TYPE_SIGNED48, /* 15 */
10_SIGNALS_TYPE_UNSIGNED48, /* 16 */
10_SIGNALS_TYPE_SIGNED56, /* 17 */
10_SIGNALS_TYPE_UNSIGNED56, /* 18 */
10_SIGNALS_TYPE_LWORD, /* 19 */
10_SIGNALS_TYPE_SIGNED64, /* 20 */
10_SIGNALS_TYPE_UNSIGNED64, /* 21 %/
10_SIGNALS_TYPE_REAL32, /% 22 %/
10_SIGNALS_TYPE_REAL64, /* 23*/
10_SIGNALS_TYPE_STRING, /* 24 */
10_SIGNALS_TYPE_WSTRING, /* 25 */
10_SIGNALS_TYPE_STRING_UUID, /% 26 */
10_SIGNALS_TYPE_STRING_VISIBLE, /% 27 */
10_SIGNALS_TYPE_STRING_OCTET, /* 28 */
10_SIGNALS_TYPE_REAL32_STATES, /* 29 */
10_SIGNALS_TYPE_DATE, /* 30 */
10_SIGNALS_TYPE_DATE_BINARY, /* 31 */
10_SIGNALS_TYPE_TIME_OF DAY, /* 32 %/
10_SIGNALS_TYPE_TIME_OF_DAY_NODATE, /* 33 */
10_SIGNALS_TYPE_TIME_DIFF, /* 34 */
10_SIGNALS_TYPE_TIME_DIFF_NODATE, /* 35 */
10_SIGNALS_TYPE_NETWORK_TIME, /* 36 */
10_SIGNALS_TYPE_NETWORK_TIME_DIFF, /* 37 */
10_SIGNALS_TYPE_F_MSGTRAILER4, /* 38 */
10_SIGNALS_TYPE_F_MSGTRAILERS, /* 39 */

10_SIGNALS_TYPE_ENGINEERING_UINT, /* 40 */
10_SIGNALS_TYPE_MAX

} 10_SIGNALS_TYPES_E;

#define 10_SIGNALS DIRECTION_CONSUMER (1)
#define 10_SIGNALS DIRECTION_PROVIDER (2)

typedef struct 10_SIGNALS_CONFIGURE_SIGNAL_REQ DATA Ttag

/* see fTieldbus specific APl Manual for a definition how this */

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 109/390
/* fieldbus specific fields shall be filled. */
TLR_UINT32 ulFieldbusSpecificl; /* e.g. Slave Handle */
TLR_UINT32 ulFieldbusSpecific2;
TLR_UINT32 ulFieldbusSpecific3; /* e.g. Slot */
TLR_UINT32 ulFieldbusSpecific4; /* e.g. SubSlot */
TLR_UINT32 ulFieldbusSpecific5s;
TLR_UINT32 ulFieldbusSpecific6;
TLR_UINT32 ulFieldbusSpecific7;
TLR_UINT32 ulFieldbusSpecific8;
/* signal direction described in this packet */
TLR_UINT32 ulSignalsDirection;
/* amount of signals contained in abSignals */
TLR_UINT32 ulTotalSignalCount;
/* array of signals - packet definition only contains the first signal, all other
follow */
struct
{
/* type of signal - see 10_SIGNALS TYPES E */
TLR_UINT8 bSignalType;
/* amount of signal (e.g. 16 for a "16 Byte Input module'™) */
TLR_UINT8 bSignalAmount;

} atSignals[1];
} 10_SIGNALS_CONFIGURE_SIGNAL_REQ DATA T;

typedef struct 10_SIGNALS_CONFIGURE_SIGNAL_REQ Ttag
TLR_PACKET_HEADER T tHead;

10_SIGNALS_CONFIGURE_SIGNAL_REQ DATA T tData;
} 10_SIGNALS_CONFIGURE_SIGNAL_REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

110/390

Packet Description

structure 10_SIGNALS_CONFIGURE_SIGNAL_REQ_T

Type: Request

Area Variable Type Value / Description
Range
Head structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 |0...2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 |40*2* Packet data length in bytes.
Number of
Signals
ulld UINT32 |0...2%2-1 Packet identification as unique number generated by the
source process of the packet
ulSta UINT32 Status not used for request.
ulCmd UINT32 | 0x6100 10_SIGNALS_CONFIGURE_SIGNAL_REQ- Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 |0 Set to zero.
Data structure 10_SIGNALS_CONFIGURE_SIGNAL_REQ DATA T
ulFieldbusSpecificl | UINT32 | 0 Unused, set to zero.
ulFieldbusSpecific2 | UINT32 | 0 The API of the submodule. Currently only O supported.
ulFieldbusSpecific3 | UINT32 | 0..0x7FFF The slot of the submodule.
ulFieldbusSpecific4 | UINT32 | 1..0x7FFF The subslot of the submodule
ulFieldbusSpecifics | UINT32 | 0 Unused. Set to zero
ulFieldbusSpecific6 | UINT32 | 0 Unused. Set to zero
ulFieldbusSpecific7 | UINT32 | O Unused. Set to zero
ulFieldbusSpecific8 | UINT32 | 0 Unused. Set to zero
ulSignalsDirection | UINT32 | 1..2 Either I0_SIGNALS_DIRECTION_CONSUMER or
IO_SIGNALS_DIRECTION_PROVIDER
ulTotalSignalCount | UINT32 | 1..1024 Count of Signals elements. (n)
atSignals {UINT8 Array of pairs of bytes which describe the signal. The first byte
;UINT8} is the signal type, the second byte is the number of elements
*n of specified kind of signal. (e.g. (20,4) is an array of four

signed 64 bit integers)

Table 62: Structure |O_SIGNALS_CONFIGURE_SIGNAL_REQ_T

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 111/390

7.1.16.2 Configure Signal Confirmation

The confirmation packet has no data part.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T 10_SIGNALS_CONFIGURE_SIGNAL_CNF_T;

Packet Description

structure 10_SIGNALS_CONFIGURE_SIGNAL_CNF_T Type: Confirmation

Area | Variable | Type ‘ Value / Range | Description

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination Queue-Handle
ulSrc UINT32 Source Queue-Handle
ulDestld UINT32 Destination End Point Identifier, specifying the final receiver of

the packet within the Destination Process. Set to 0 for the
Initialization Packet

ulSrcld UINT32 Source End Point Identifier, specifying the origin of the packet
inside the Source Process

ulLen UINT32 |0 Packet Data Length in bytes

ulld UINT32 |0..2%-1 Packet Identification as unique number generated by the
Source Process of the Packet

ulSta UINT32 Result of operation.

ulcCmd UINT32 | 0x6101 10_SIGNALS_CONFIGURE_SIGNAL_CNF- Command

ulExt UINT32 |[x Not in use. Ignore.

ulRout UINT32 |x Routing, ignore.

Table 63: 10_SIGNALS_CONFIGURE_SIGNAL_CNF_T — Configure Signal Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 112/390

7.1.16.3 Example: Configure Sighal Request packet

For an imaginary 12 byte input submodule using the data structure

struct {
UINT32 aulDatal[2];
UINTS8 abData2[2];
UINT16 usData3;

}

Which corresponds to the following 10 data subsection in a GSDML file

<lOData IOPS_Length="1" 10CS_Length="1">
<Input>
<Dataltem DataType="Unsigned32" Textld="aulDatala'/>
<Dataltem DataType="'Unsigned32"™ Textld="aulDatalb"/>
<Dataltem DataType="OctetString" Length="2" Textld="abData2"/>
<Dataltem DataType="Unsigned16" Textld="abData3'/>
</Input>
</I10Data>

The Configure Signal Request packet has to be filled in as follows:

10_SIGNALS_CONFIGURE_SIGNAL_REQ T* ptRequest =
malloc(sizeof(10_SIGNALS_CONFIGURE_SIGNAL_REQ) + 2 * (4-1));

memset(ptRequest,0x00, sizeof(10_SIGNALS CONFIGURE_SIGNAL REQ) + 2 * (3-1));

ptRequest->tHead.ulCmd
ptRequest->tHead.ullLen

10_SIGNALS_CONFIGURE_SIGNAL_REQ;
sizeof(10_SIGNALS_CONFIGURE_SIGNAL_REQ) + 2 * (3-1);

ptRequest->tData.ulFieldbusSpecific2
ptRequest->tData.ulFieldbusSpecific3
ptRequest->tData.ulfieldbusSpecific4

0; /* api */
1; /* slot */
1; /* subslot */

ptRequest->tData.ulSignalsDirection
ptRequest->tData.ulTotalSignalCount

10_SIGNALS_DIRECTION_PROVIDER;

3;

ptRequest->tData.atSignals[0].bSignalType 10_SIGNALS_TYPE_UNSIGNED32;

ptRequest->tData.atSignals[0]-bSignalAmount = 2;
ptRequest->tData.atSignals[1]-bSignalType = 10_SIGNALS_TYPE_BYTE;
ptRequest->tData.atSignals[1]-bSignalAmount = 2;

ptRequest->tData.atSignals[2] .bSignalType = 10_SIGNALS_TYPE_UNSIGNED16;
ptRequest->tData.atSignals[2].bSignalAmount =1;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 113/390

7.2 Connection Establishment

After the stack has been configured and switched to bus on (if auto start has been disabled), the
device is ready for operation and waits for incoming events from the network. If the device is
activated for the first time, usually NameOfStation has not been configured yet. Depending on the
PROFINET Controller configuration, the NameOfStation needs to be assigned by the engineering
or will be assigned by the controller according to the topology. At next, the controller will verify the
IP parameters of the device and adapt them according to its configuration. These steps are done
using the DCP protocol as shown in the next two figures.

Device

Engineering | | Controller Stack Application
I I l l
Comissioning of the factory 4 | |
| | I |
' DCP Set NarheOfStation.reg ! '
i i > :
L‘DCF' Set NameOfStation.cf | l
I i I
I 1 I 1
| | | Save Station Name Ind |
i i i L
I 1 I 1
[[I Save Station Mame Rsp !
I I n :
| | : Store Remanent Ind :
| | | .
! ! | Store Remanent Rsp |
| | I“ |
1 I I I
: | DCP Identify req | :
| r |
| | I |
! | DCP Identify| cnf | |
| - ! !
I alt [HoMrong IP parameters set] i
i | |
: | DCP Set IP.feq | |
I L F I
I | | |
: : : (Re-) Configure IP :
! ! | l
| | I |
: | DCP Set IP.knf | :
I i" i |
| | I |
! ! : Save [P Address Ind [
| I 1 ..:
: : | Save IP Address Rsp :
i | =] |
I 1 I 1
! ! | Store Remanent Ind |
i i 1 .'i
I 1 I 1
[[i Store Remanent Rsp |
| ' - !
I 1 I 1

Engineering | | Controller Stack Application

Figure 12: Initial Configuration by DCP without topology information at controller side.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 114/390

Device

Contraller Stack Application

T I
| |
' DCF Identify.req ' |
i |

>
alt [HameOfStation not yet|set] | i
| |
' Timeout : :
» | |
| I |
| DCP Identify.req (Alias NameL: I
[|
| I |
| DCP Identify.cnf (Alias Name) | \
1 |
| I |
: DCF Set NameOfStation.rgq ..: :
| | |
L‘DCF‘ Set NameOfStation.gnf | |
1 |
| | |
! | Save Station Name Ind |
| . I
| | |
[I Save Station Mame Rsp !
| N |
: : Store Remanent Ind :
[I -
| | |
! ' Store Remanent Rsp !
| - |
[NameOfStation set] : :
| DCP Identify.cnf | |
i“ | |
| | |
alt [HoMrong IP parameters sei'.] :
| | |
| DCP Set IP.req : :
i] I
| | |
! | (Re-) Configure IP |
| -~ :
| | |
' OCP Set IP.cnf))
- | |
| | Save IP Address Ind |
| | >
\ | Save IP Address Rsp |
| r [
| | |
! : Store Remanent Ind [
| , >
: | Stare Remanent Rsp :
| el i
| | i
Contraller Stack Application

Figure 13: Initial Configuration by DCP using topology information at controller side.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

115/390

Afterwards, the IP stack of the device is active and the RPC layer accepts incoming requests from
the network. The PROFINET controller will now establish an AR. If the application registered with
the stack previously, several indications will be generated. These must be handled properly in
order to establish the connection successfully.

A typical interaction between stack and application is shown in the next two figures:

Device

Contraller Stack Application
! : i
"'DCF Identify.re I '
: e > |
| DCP Identify. cnf i I
o} | i
| i |
E Connect.req ..i i
| i |
[I AR Check Ind [
i L HI
| I
| | AR Check Rsp |
] :q :
: Iunp) [For all 3uhmndule.l'rnndu1e differences]
I | |
| | Check Ind |
| i »
I | |
| I Check Rsp '
I I,q I
I | |
! | Connect Request Done Ind .J'
| i 1
i Connect.cnf : :
o} 1 i
| i 1
| | Connect Request Done Rsp |
i et 1
| 1 |

quE /7 [For all Parameter Flacn"ds] :
| i |
"Write. re I '
= > |
: altl) [UserRecord] |
I T |
| : Write Record Ind :
| i >
| | Write Record Rsp |
i (e i
| [No User Record] |
: : Internal Handling :
| oa— '
| |
| i i
" Write. cnf I '
- l l

Contraller Stack Application

Figure 14: Sequence between Controller, Stack and Application during Connection Establishment

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 |

English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

116/390

Device

Contraller stack Application

T T I

! | Parameterization Speedup Ind |

| I .1

| i |

| L.F‘ararneterizatinn Speedup Rsp |

i i |

E Ctrl.req (Param End) .-i i

i i |

: alt) [if Ho Flash and Parameters:[:hangﬂd]

| I |

! | Store Remanent Ind |

| i »

| I |

i i i Store Data to

| : : non vdlatile memaory

I] [—

[i . E—

| i |

| | Store Remanent Rsp |

i rot 1

: \ Param End Ind :

| I =i

| i |
alt__/ [fSetApplReady=1] [| |

i i |

| | Param End Rsp \

| 4 i

i i |

' Ctrl.enf (Param End) ! !

™ : |

[fSetAppIReady = 0] ! i

! ' Param End Rsp '

. I i

| Ctrl.enf (Param End) : :

il 1 i

i i |

| : | Perfortn Internal Stuff

I i '—

i i "‘—

| i |

E E-Set Appl Ready Req i

| i |

| [Set Appl Ready Req .-:

| I) |

! | Update Provider Data |

i = |

:H.Ctrl.req (Application Ready) i i

i i |

. Ctrl.enf (Application Rezdyu \

T |

i i |

! i In Data Ind ...i

: In Data Rsp i

i e}

| I |
Contraller stack Application

Figure 15: Sequence between Controller, Stack and Application during Connection Establishment (continued)

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English |

2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 117/390

The very first indication will be the AR_Check_Indication (see section 6.2.1). This informative
indication signifies the beginning of the AR establishment phase.

In the next step the stack will compare the module configuration requested by the controller with
the current module configuration of the stack. Depending on the stack configuration parameters,
the stack will now generate a Check_Indication (see section6.2.2.1) for each used, wrong,
unused or missing (sub) module. If desired, the application has the opportunity to reconfigure the
stack. For this, the Plug/Pull Services shall be used before returning the Check_Response back to
the stack. Additionally, the Check Response provides the ability to report a substitute (sub)
module.

After all Check_Indications have been processed, the Stack will generate the Connect.cnf to the
PROFINET Controller and issue a Connect_Request_Done_Indication (see section 6.2.3.1) to
the application. This informative indication signifies the end of the first phase.

The PROFINET Controller will now parameterize the device by writing the parameter records of the
valid (sub-)modules. If parameter records have been specified in the device description file
(GSDML), Write_Record_Indications (see section 6.3.2.1) will be generated for each record
written by the controller. This data has to be validated and evaluated by the application.

When the PROFINET Controller has finished writing the parameters, it will generate a ParamEnd
Control message. At first, the stack will check if FastStartUp (FSU) shall be used for this AR. This
will be indicated to the Application by issuing a Parameterization_Speedup_Indication with non-
zero UUID. In that case, the Application is requested to store the UUID and the parameter records
into non volatile memory in order to restore them on next power up. The UUID value shall be used
to detect parameter changes in that case. Additionally, a Parameter_End_Indication (see section
6.2.4.1) will be generated by the stack. At this time, the application should apply all written
parameter data to its internal logic/hardware (Only if parameters changed or Non-FSU mode is in
use. Otherwise the parameter should have been restored from non-volatile memory at power on
already). When finished, the application should generate the Parameter_EndResponse from the
indication. If the application will need some further initialization time, the application may explicitly
request Application Ready by setting fSendApplReady to False and generating an
Set_ApplReady_Req later on (see section 6.2.5).

0 Attention:

A © Before the stack actually generates the Application Ready request to the Controller it will
also wait for the application to update the provider data. This is necessary as the cyclic
telegrams sent by the device must contain valid data before the application ready is
issued.

Finally, the AR_InData_Indication (see section 6.2.6.1) informs the application about the fact that
the first cyclic frame from the IO-Controller has been received after the Application Ready
Confirmation. The AR is now established and valid data-exchange takes place.

0 Attention:

A © As the stack supports multiple ARs, multiple connection establishment sequences may
occur in the same time. The device handle parameter of the indications shall be used to
differentiate between these ARs.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

118/390

In detail, the following functionality concerning connection establishment is provided by the
PROFINET 1O Device IRT Stack:

Overview over the Connection Establishment Packets of the PROFINET IO Device IRT Stack
No. of Packet Command code (REQ/CNF or IND/RES) Page
section
6.2.1 AR Check Indication Ox1F14 119
AR Check Response 0x1F15 121
6.2.2 Check Indication 0x1F16 122
Check Response Ox1F17 127
6.2.3 Connect Request Done Indication 0x1FD4 129
Connect Request Done Response Ox1FD5 130
6.2.4 Parameter End Indication 0x1FOE 132
Parameter End Response Ox1FOF 132
6.2.5 Application Ready Request 0x1F10 134
Application Ready Confirmation Ox1F11 135
6.2.6 AR InData Indication O0x1F28 137
AR InData Response 0x1F29 138
6.2.7 Store Remanent Data Indication Ox1FEA 139
Store Remanent Data Response Ox1FEB 140

Table 64: Overview over the Connection Establishment Packets of the PROFINET IO Device IRT Stack

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 119/390

7.2.1 AR Check Service

The AR Check Service is used by the protocol stack to indicate that a new AR is going to be
established. It will be generated by the protocol stack right after receiving and checking the
PROFINET Connect Request.

7.2.1.1 AR Check Indication

This packet contains information about the AR to be established. It is sent from the stack to the
application.

Note:
. Prior to stack/firmware version 3.5.21.0 the field “tCmInitiatorObjuuID” was
not reported. In that case the packet length was 256.

Packet Structure Reference
typedef struct PNS_IF_AR CHECK_IND DATA Ttag

TLR_UINT32 hDeviceHandle;
TLR_UINT16 USARType;
TLR_UINT32 ulARProperties;
TLR_UINT32 ulRemotel pAddr;
TLR_UINT16 usRemoteNameOfStationlLen;
TLR_UINTS8 abRemoteNameOfStation[PNIO_MAX NAME_OF STATION];
PNS_IF_UUID_T tCmlnitiatorObjuUulD;
} PNS_IF_AR_CHECK_IND_DATA T;

typedef struct PNS_IF_AR _CHECK_IND_ Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_AR_CHECK_IND_DATA_T tData;

} PNS_IF_AR_CHECK_IND_T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

120/390

Packet Description

Structure PNS_IF_AR_CHECK_IND_T

Type: Indication

Area | Variable Type Value / | Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of CMDEV-task
process queue
ulSrc UINT32 Source queue handle of AP-task process queue
ulDestld UINT32 0 Destination End Point Identifier not in use, set to
zero for compatibility reasons
ulSrclid UINT32 0 ... 2%2 | Source End Point Identifier, specifying the origin
-1 of the packet inside the Source Process.
ulLen UINT32 272 Packet data length in bytes
ulld UINT32 0 ... 232 | Packet identification as unique number
-1 generated by the source process of the packet
ulSta UINT32 0 Status not in use for indications.
ulCmd UINT32 0x1F14 | PNS_IF_AR_CHECK_IND-Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_IF_AR_CHECK_IND_DATA T
hDeviceHandle UINT32 The device handle.
UsSARType UINT16 Connect-Request’'s AR-Type
ulARProperties UINT32 Connect-Request’'s AR-Properties.
ulRemotel pAddr UINT32 IO0-Controller’'s IP address.
usRemoteNameOfStationLen | UINT16 1..240 | Length of IO-Controller's NameOfStation.
abRemoteNameOfStation[24 |UINTS IO-Controller's NameOfStation as ASCII byte-

0]

array.

tCminitiatorObjuuID

PNS_IF_UUID_T

The ContextManagement Initiator Object UUID
used by I0-Controller for this AR.

Note:

This field is contained in the indication starting
with stack/firmware version 3.5.21.0

Table 65: PNS_IF_AR_CHECK_IND_T - AR Check Indication

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 121/390
7.2.1.2 AR Check Response

The application has to return an AR check response after receiving the AR Check Indication.

Packet Structure Reference
typedef struct PNS_IF _HANDLE DATA Ttag

UINT32 hDeviceHandle;
} PNS_IF_HANDLE_DATA T;

typedef struct PNS_IF _HANDLE PACKET_ Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_HANDLE_DATA T tData;

3 PNS_IF_HANDLE_PACKET T;

typedef PNS_IF_HANDLE_PACKET T PNS_IF_AR_CHECK_RSP_T;

Packet Description

structure PNS_1F_AR_CHECK_RSP_T Type: Response

Area | Variable Type Value / Range | Description

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ulLen UINT32 4 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 0 Status has to be ok for this service.

ulCmd UINT32 0x1F15 PNS_IF_AR_CHECK_RES-Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | Structure PNS_IF_HANDLE_DATA_T

hDeviceHandle |UINT32 The device handle.

Table 66: PNS_IF_AR_CHECK_RSP_T - AR Check Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 122/390

7.2.2 Check Indication Service

If the PROFINET IO-Controller expects different submodules than configured in the PROFINET 10-
Device stack, the Check Indication Service will be used to indicate this to the application. The
indication contains all parameters the controller expected along with the current module and
submodule state. If the submodule state is indicated as
PNIO_SUBSTATE_WRONG_SUBMODULE the application may use the submodule state
PNIO_SUBSTATE_SUBSTITUTE_SUBMODULE in the response to tell the stack that the
configured submodule is able to perform like the requested submodule. Alternatively, if the
application is designed to adapt to the requested configuration, the application may reconfigure the
stack on check indication.

Note:

0 A Check Indication Service may also be issued after a Extended Plug Submodule
Request. In that case the recently plugged submodule has been associated with a
new AR which expects another submodule.

Note:

0 A Check Indication Service may also be issued after on submodule AR ownership
change. In that case a submodule has been associated with an existing AR which
expects another submodule.

In most applications the device will not adapt to the controllers configuration, e. g. (modular) /O
devices, sensors, gateways etc. The sequence for this is shown in the following figure.

Device

Contraller Stack Application

Connect.req J

i i
loop) [For all submodule differenges]

Check Ind

-

Check Rsp
JUnchanged or Suhbstitute)

Connect.rsp
(Module Diff
according Check Senfice
< g vice)

Figure 16: Check Service Packet sequence for non adapting applications

Special applications may require an adaption to the controller expectations. This includes for
example:

PROFIdrive: Here, the controller selects the desired PROFIdrive telegram type by means of
submodule id.

Selectable Data Length for Sensors: The maximum length of the presented barcode may be
selected by module/submodule id.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

123/390

Configuration of a Gateway by adapting to the submodule configuration expected by the

controller.

The packet sequence then is
4. Check indication
5. Pull request and confirmation: Pull Module Request and Pull Module Confirmation or

Pull Submodule Request and Pull Submodule Confirmation.

6. Plug request and confirmation: Plug Submodule Request and Plug Submodule Confirmation
or Extended Plug Submodule Request and Extended Plug Submodule Confirmation.

7. Check response
The sequence of adaption is shown in the next figure.

Device
Contraller Stack Application
Connect.req J
i
Innp) [For all submodule differences]
Check Ind
-
‘F‘ull Submaodule / Module Req
Full Submaodule f Module Cnf
-
‘F‘Iug (Extended) Submodule Req
Flug (Extended) Submodule Cnfp
Check Rsp
-t
Connect.rsp
JND Muodule Diff)

Figure 17: Check Service Packet sequence for adapting applications

PROFINET IO Device

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

V3.12.0 | Protocol API

© Hilscher, 2006-2017

Packet Interface

124/390

7.2.2.1

Check Indication

This packet indicates the parameters of a wrong / missing (sub)module to the application. If
enabled by the corresponding startup flags in Set Configuration Service, this indication will also be

generated for unused or correct submodules.

Packet Structure Reference
typedef struct PNS_IF _CHECK_ IND_IND_DATA Ttag

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT16
TLR_UINT32
TLR_UINT16
TLR_UINT16
TLR_UINT16

hDeviceHandle;
ulApi;

ulSlot;
ulSubslot;
ulModuleld;
usModuleState;
ulSubmodld;
usSubmodState;
uskExplInDatalen;
usExpOutDatalen;

} PNS_IF_CHECK_IND_IND_DATA T;

typedef struct PNS_IF_CHECK_IND_ Ttag

/** packet header */

TLR_PACKET _

HEADER_T

/** packet data */
PNS_IF_CHECK_IND_IND_DATA T
} PNS_IF_CHECK_IND T;

tHead;

tData;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

125/390

Packet Description

Structure PNS_IF_CHECK_IND_T

Type: Indication

Area| Variable Type Value / Description
Range
Head| structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of CMDEV-task process queue
ulSrc UINT32 Source queue handle of AP-task process queue
ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons
ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.
ulLen UINT32 32 Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as unique number generated by the
source process of the packet
ulSta UINT32 0 Status not in use for indications.
ulCmd UINT32 Ox1F16 PNS_IF_CHECK_IND-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_CHECK_IND_IND_DATA_T

hDeviceHandle UINT32 The device handle.

ulApi UINT32 The API of the wrong submodule.

ulSlot UINT32 The slot of the wrong submodule.

ulSubslot UINT32 The subslot of the wrong submodule.

ulModuleld UINT32 The Module ID the 10-Controller expected

usModuleState UINT16 The Module State suggested by the stack (s. Table 68).

ulSubmodlId UINT32 The Submodule ID the 10-Controller expected.

usSubmodState UINT16 The Submodule state suggested by the stack (s. Table 69).

usExplInDatalLen UINT16 The length of input data IO-Controller expects for the
submodule. This is only informative for application.

usExpOutDatalen UINT16 The length of output data 10-Controller expects for the

submodule. This is only informative for application.

Table 67: PNS_IF_CHECK_IND_T - Check Indication

Definitions used for the field usModuleState field for indication:

Definition / (Value)

Description

PNIO_MODSTATE_NO_MODULE

(0x0)

No module plugged into the slot specified.

PNIO_MODSTATE_WRONG_MODULE

(Ox1)

A wrong module is plugged into the specified slot.

PNIO_MODSTATE_PROPER_MODULE

(0x2)

A proper (the correct) module is plugged into the specified slot but is
already used by another IO-Controller and is therefore not
accessible.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

126/390

Definition / (Value)

Description

PNIO_MODSTATE_UNUSED_MODULE
(0x4)

A module is plugged into the specified slot but is not requested/used
by the IO-Controller.

Table 68: Possible values for field usModulleState in check indication

Definitions used for the field usSubmodState field for indication:

Definition / (Value)

Description

PNIO_SUBSTATE_NO_SUBMODULE
(0x0)

No submodule plugged into the slot/subslot specified.

PNIO_SUBSTATE_WRONG_SUBMODULE
(Ox1)

A wrong submodule is plugged into the specified slot/subslot.

PNIO_SUBSTATE_PROPER_SUBMODULE
(0x2)

A proper (the correct) submodule is plugged into the specified
slot/subslot but is already used by another I0-Controller. It cannot
be used now.

PNIO_SUBSTATE_APPL_READY_PENDING
(0Ox4)

The correct submodule is plugged into the specified slot/subslot but
it is not ready for data exchange yet.

PNIO_SUBSTATE_UNUSED_SUBMODULE
(0x8)

A submodule is plugged into the specified slot/subslot but it is not
requested/used by the I0-Controller.

Table 69: Possible values for field usSubmodState in check indication

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 127/390

7.2.2.2 Check Response
With this response packet the application influences the ModuleDiffBlock, which the 10-Device
stack sends to 10-Controller.

Possible values for the fields usModuleState and usSubmodState are defined below the packet
description in additional tables.

Note: If the application adapted the module configuration to the one the 10-Controller
expected, this shall be indicated to the stack using the PNIO_XXX CORRECT_XXX
(sub)module states.

Packet Structure Reference
typedef struct PNS_IF _CHECK_ IND_RSP_DATA Ttag

TLR_UINT32 hDeviceHandle;
TLR_UINT32 ulApi;
TLR_UINT32 ulSlot;
TLR_UINT32 ulSubslot;
TLR_UINT32 ulModuleld;
TLR_UINT16 usModuleState;
TLR_UINT32 ulSubmodld;
TLR_UINT16 usSubmodState;

} PNS_IF_CHECK IND_RSP_DATA T;

typedef struct PNS_IF_CHECK_RSP_Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_1F_CHECK_IND_RSP_DATA_T tData;

} PNS_IF_CHECK RSP _T;:

Structure PNS_IF_CHECK_RSP_T Type: Response

Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrcld UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 28 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 The status has to be okay for this service.

ulCmd UINT32 Ox1F17 PNS_IF_CHECK_RES-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_CHECK_IND_RSP_DATA_T

hDeviceHandle | UINT32 The device handle

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 128/390

Structure PNS_IF_CHECK_RSP_T Type: Response
Area | Variable Type Value / Description
Range
ulApi UINT32 The API of the wrong submodule.
ulSlot UINT32 The slot of the wrong submodule.
ulSubslot UINT32 The subslot of the wrong submodule.
ulModuleld UINT32 The ModulelD the I0-Controller expected

usModuleState | UINT16 See below The ModuleState (s. Table 71).

ulSubmodld UINT32 The SubmodulelD the 10-Controller expected.

usSubmodState | UINT16 See below The SubmoduleState (s. Table 72). Only the value
PNIO_SUBSTATE_SUBSTITUTE_MODULE is honored by the
stack. Any other value will lead to default behavior.

Table 70: PNS_IF_CHECK_RSP_T - Check Response

Definitions to use for the field usModuleState field in response:

Definition / (Value) Description

PNIO_MODSTATE_NO_MODULE No module plugged into the slot specified.

(0x0)

PNIO_MODSTATE_WRONG_MODULE A wrong module is plugged into the specified slot.

(Ox1)

PNIO_MODSTATE_PROPER_MODULE A proper (the correct) module is already plugged into the specified

(0x2) slot and therefore no configuration adaptation happens.

PNIO_MODSTATE_SUBSTITUTE_MODULE A substitute module is plugged into the specified slot. Substitute

(0x3) modules can offer the same functionality as the originally requested
module.

PNIO_MODSTATE_UNUSED_MODULE A module is plugged into the specified slot but is not requested/used

(0Ox4) by the IO-Controller.

PNIO_MODSTATE_CORRECT_MODULE A correct module is plugged into the specified slot on adaptation of

(Oxffff) the module configuration by application.

Table 71: Field usModuleState in response packet

Definitions to use for the field usSubmodState field in response:

Definition / (Value) Description

PNIO_SUBSTATE_NO_SUBMODULE No submodule plugged into the slot/subslot specified.

(0x0)

PNIO_SUBSTATE_WRONG_SUBMODULE A wrong submodule is plugged into the specified slot/subslot.

(Ox1)

PNIO_SUBSTATE_PROPER_SUBMODULE A proper (the correct) submodule is plugged into the specified

(0x2) slot/subslot and therefore no configuration adaptation happens.

PNIO_SUBSTATE_SUBSTITUTE_SUBMODULE | A substitute submodule is plugged into the specified slot/subslot.

(0x7) Substitute submodules can offer the same functionality as the
originally requested submodule.

PNIO_SUBSTATE_UNUSED_SUBMODULE A submodule is plugged into the specified slot/subslot but it is not

(0x8) requested/used by the I0-Controller.

PNIO_MODSTATE_CORRECT_SUBMODULE A correct submodule is plugged into the specified slot/subslot on

(Oxffff) adaptation of the submodule configuration by application.

Table 72: Field usSubmodState in response packet

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 129/390

7.2.3 Connect Request Done Service

The stack sends the indication Connect Request Done to the application to indicate that no more
Check Indications will be sent by the stack. Now the application has to examine all information
provided by the stack to have exact knowledge about the submodules and the frame offsets of
their I0-data. The application has to collect the information from the Check_Indication (see section
6.2.2) in order to do so.

7.2.3.1 Connect Request Done Indication
The indication packet is informative only.

Packet Structure Reference

typedef struct PNS_IF _HANDLE DATA_ Ttag

TLR_UINT32 hDeviceHandle;
} PNS_IF_HANDLE_DATA T;

typedef struct PNS_IF _HANDLE PACKET Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_HANDLE_DATA_T tData;

3 PNS_IF_HANDLE_PACKET T;

typedef PNS_IF_HANDLE_PACKET T PNS_IF_CONNECTREQ_DONE_IND_T;

Packet Description

Structure PNS_1F_CONNECTREQ_DONE_IND_T Type: Indication
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 4 Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for indications.

ulCmd UINT32 0x1FD4 PNS_IF_CONNECT_REQ_DONE_IND-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_HANDLE_DATA_T

hDeviceHandle | UINT32 The device handle

Table 73: PNS_IF_CONNECTREQ_DONE_ IND_T - Connect Request Done Indication

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 130/390

7.2.3.2 Connect Request Done Response
The application has to return this packet after receiving a Connect Request Done indication. The
device handle has to match that of the indication.

Packet Structure Reference
typedef struct PNS_IF _HANDLE DATA Ttag

TLR_UINT32 hDeviceHandle;
} PNS_IF_HANDLE_DATA T;

typedef struct PNS_IF _HANDLE PACKET_ Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_HANDLE_DATA_T tData;

} PNS_IF_HANDLE_PACKET T;

typedef PNS_IF_HANDLE_PACKET T PNS_IF_CONNECTREQ DONE_RSP_T;

Packet Description

Structure PNS_IF_CONNECTREQ_DONE_RSP_T Type: Response
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 4 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 The status has to be okay for this service.

ulCmd UINT32 0x1FD5 PNS_IF_CONNECT_REQ_DONE _RES-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_I1F_HANDLE_DATA_T

hDeviceHandle | UINT32 The device handle

Table 74: PNS_IF_CONNECTREQ_DONE_RSP_T - Connect Request Done Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 131/390
7.2.4 Parameter End Service

When the I0-Controller has finished parameterizing the 10-Device, it sends the Parameter End
command. This is indicated by the stack to the application.

With receipt of this indication the application shall start configuring its submodules with the
parameters from the write indications having been received. If no write indication was received
nothing has to be done.

If the application is ready, the packet shall be answered with field fSendAppl 1icationReady set
to true in order to indicate to the stack, that the application is ready for cyclic process data
exchange. If for any reason the application requires additional time to get ready, the application
shall set the field fSendApplicationReady to false and respond to the indication immediately.
When the application gets ready, it shall use the Application Ready Service described in section
6.2.5 to indicate this to stack.

Note:

Before the stack will signal the Application Ready to the |O-Controller, the User
Application is required to provide the Stack with valid 1/O Data. Therefore the Application
is required to write the 1/O Data after returning Parameter End Response with
fSendApplicationReady to true (See section 6.2.5).

_) Note:

. For this service, a timeout is implemented in the stack. If the application does not answer
within the timeout the stack will automatically generate a negative response the 10-
Controller. See section Timeout for Response Packets on page 27 for the timeout value.

7.2.4.1 Parameter End Indication

This packet indicates the receipt of Parameter End from 10-Controller.

Note:
The combination of usSubslot, usSlot and ulApi all being zero at the same time
signifies Parameter End for all submodules.

Packet Structure Reference
typedef struct PNS_IF_PARAM_END_ IND_DATA Ttag

TLR_UINT32 hDeviceHandle;

TLR_UINT32 ulApi; /* valid only if usSlot 1= 0 */
TLR_UINT16 usSlot; /* valid only if usSubslot = 0 */
TLR_UINT16 usSubslot; /* 0: for all (sub)modules, '= 0: for this specific

submodule */
} PNS_IF_PARAM_END_IND_DATA T;

typedef struct PNS_IF _PARAM_END IND_Ttag
TLR_PACKET_HEADER_T tHead;

PNS_IF_PARAM_END_IND_DATA_T tData;
3 PNS_IF_PARAM_END_IND_T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

132/390

Packet Description

Structure PNS_IF_PARAM_END_IND_T

Type: Indication

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of CMDEV-task process queue
ulSrc UINT32 Source queue handle of AP-task process queue
ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons
ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 12 Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as unique number generated by the
source process of the packet
ulSta UINT32 0 Status not in use for indications.
ulCmd UINT32 Ox1FOE PNS_IF_PARAM_END_IND-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 0 Routing not in use, set to zero for compatibility reasons
Data | structure PNS_1F_PARAM_END_IND_DATA_T
hDeviceHandle | UINT32 The device handle
ulApi UINT32 The API of the module whose parameterization is finished.
Only valid if usSlot != 0.
usSlot UINT16 The slot of the module whose parameterization is finished.
Only valid if usSubslot != 0.
usSubslot UINT16 0 Parameterization is finished for all modules.
1=0 Parameterization is finished for the module specified by ulApi,
usSlot and usSubslot.

Table 75: PNS_IF_PARAM_END_IND_T - Parameter End Indication

7.24.2

Parameter End Response

This packet has to be returned to the stack. Depending on the field fSendApplicationReady the
stack will automatically send the command Application Ready to the 10-Controller. If ulSta is set
to TLR_S_OK the stack will automatically send the Application Ready to IO-Controller.

Note:

It is not allowed to send Application ready until the IOPS and IOCS of all submodules are
set to good. If application is ready but for any reason the data status for a specific
submodule is not good it is forbidden to send the application ready indication to |O-

Controller.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 133/390

Packet Structure Reference
typedef struct PNS_IF_PARAM_END RSP_DATA Ttag
TLR_UINT32 hDeviceHandle;
TLR_BOOLEAN fSendApplicationReady; /* set to TRUE to send ApplReady automatically */
} PNS_IF_PARAM_END_RSP_DATA T;
typedef struct PNS_IF _PARAM_END RSP_Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_PARAM _END_RSP_DATA T tData;

3 PNS_IF_PARAM_END_RSP_T;

Packet Description

Structure PNS_IF_PARAM_END_RSP_T Type: Response

Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process
queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero
for compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ullLen UINT32 8 Packet data length in bytes

ulld UINT32 |0..2%2-1 Packet identification as unique number generated by
the source process of the packet

ulSta UINT32 See below.

ulCmd UINT32 O0x1FOF PNS_IF_PARAM_END_RES-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_PARAM_END_RSP_DATA_T

hDeviceHandle UINT32 Handle to the I0-Device.

fSendApplicationReady | BOOL32 |FALSE (0) | The stack shall not automatically send
ApplicationReady. This will be initiated by Application
using the Service described in section 6.2.5.

The stack shall automatically send ApplicationReady.
Table 76: PNS_IF_PARAM_END_RSP_T - Parameter End Response

TRUE

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 134/390

7.2.5

Application Ready Service

With this service the application shall indicate to the stack, that it is ready for process data
exchange and that the stack shall signal Application Ready to the IO-Controller. This is only
necessary, if the application returned the Parameter End Response with fSendApplicationReady
set to false.

7.25.1

Note:

If the application does not signal Application Ready to the Stack/ Controller at all, cyclic
process data cannot be exchanged. Therefore the Application is required to indicate
Application Ready at some time point (Many Controllers abort the Application Relation if
ApplicationReady is not signaled within a timeout.

Note:

If the Application handles the Provider-State on itself, it is important to set up the
Provider States before sending Application Ready. The 10-Controller will evaluate the
Provider States on Application Ready and will ignore all Submodules with Bad Provider
State for Cyclic Process Data Exchange

Note:

As Application Ready also signals valid process data to the 10-Controller, the stack is
required to update its internal buffer at least once from the DPM Output Area / Provider
Image. Therefore the Application shall either use xChannellOWrite (DPM) or the
UpdateProviderData callback function (Linkable Object) to allow the Stack to do so. Even
if the Device has no Input data this shall be done. Calling xChannellOWrite may be
called with data length zero (Just to toggle the handshake flags). It may happen that
xChannellOWrite reports an error (COM-Flag not set) which can be ignored.

Application Ready Request

This request packet has to be sent by application to the stack if Application Ready shall be sent to
the PROFINET IO-Controller.

Packet Structure Reference
typedef struct PNS_IF _HANDLE DATA_ Ttag

TLR_UINT32 hDeviceHandle;
} PNS_IF_HANDLE_DATA T;

typedef struct PNS_IF _HANDLE PACKET Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_HANDLE_DATA T tData;

3 PNS_IF_HANDLE_PACKET T;

typedef PNS_IF_HANDLE_PACKET_ T PNS_IF_APPL_READY_REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

135/390

Packet Description

Structure PNS_IF_APPL_READY REQ T

Type: Request

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 4 Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as unique number generated by the source
process of the packet
ulSta UINT32 0 Status not in use for indications.
ulCmd UINT32 0x1F10 PNS_IF_SET_APPL_READY_REQ-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_1F_APPL_READY_REQ DATA_T
hDeviceHandle | UINT32 The device handle representing the AR for which Application
Ready should be signaled. Use the device handle from
associated Parameter End Indication.

Table 77: PNS_IF_APPL_READY_IND_T - Application Ready

7.2.5.2 Application Ready Confirmation

The stack will respond with this packet.

Packet Structure Reference
typedef struct PNS_IF _HANDLE DATA Ttag

TLR_UINT32 hDeviceHandle;

} PNS_IF_HANDLE_DATA T;

typedef struct PNS_IF_HANDLE PACKET Ttag

/** packet header

*/

TLR_PACKET HEADER_T
/** packet data */
PNS_IF_HANDLE_DATA T

} PNS_IF_HANDLE PACKET_T;

typedef PNS_IF_HANDLE_PACKET T

tHead;

tData;

PNS_IF_APPL_READY_CNF T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

136/390

Packet Description

Structure PNS_IF_APPL_READY_CNF_T

Type: Confirmation

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 4 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 See below.

ulCmd UINT32 Ox1F11 PNS_IF_SET_APPL_READY_CNF-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data

structure PNS_IF_HANDLE_DATA_T

hDeviceHandle

UINT32

The device handle.

Table 78: PNS_IF_APPL_READY_CNF_T - Application Ready Confirmation

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 137/390

7.2.6 AR InData Service

With this service the stack indicates to the application that the first cyclic frame from the 10-
Controller was received after ApplicationReady was sent by the 10-Device stack.

7.2.6.1 AR InData Indication

This packet indicates the receipt of the first cyclic frame to the application.
Packet Structure Reference

typedef struct PNS_IF _HANDLE DATA_ Ttag

TLR_UINT32 hDeviceHandle;
} PNS_IF_HANDLE_DATA T;

typedef struct PNS_IF _HANDLE PACKET Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_HANDLE_DATA T tData;

3 PNS_IF_HANDLE_PACKET T;

typedef PNS_IF_HANDLE_PACKET_ T PNS_IF_AR_IN_DATA_IND_T;

Packet Description

Structure PNS_1F_AR_IN_DATA IND_T Type: Indication
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 4 Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for indications.

ulCmd UINT32 0x1F28 PNS_IF_AR_INDATA_IND-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_HANDLE_DATA_T

hDeviceHandle | UINT32 The device handle

Table 79: PNS_IF_AR_IN_DATA_IND_T - AR InData Indication

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 138/390

7.2.6.2 AR InData Response
The application has to return this packet.
Packet Structure Reference

typedef struct PNS_IF _HANDLE DATA_ Ttag

TLR_UINT32 hDeviceHandle;
} PNS_IF_HANDLE_DATA T;

typedef struct PNS_IF _HANDLE PACKET Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_HANDLE_DATA_T tData;

} PNS_IF_HANDLE_PACKET T;

typedef PNS_IF_HANDLE_PACKET T PNS_IF_AR_IN_DATA RSP T;

Packet Description

Structure PNS_IF_AR_IN_DATA RSP_T Type: Response
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestlid UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 4 Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 The status has to be okay for this service.

ulCmd UINT32 0x1F29 PNS_IF_AR_INDATA_RES-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | Structure PNS_IF_HANDLE_DATA T

hDeviceHandle | UINT32 The device handle

Table 80: PNS_IF_AR_IN_DATA_RSP_T - AR InData Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 139/390

7.2.7 Store Remanent Data Service

Using this service the stack indicates the presence of remanent data to the user. The application is
responsible for storing this data into a permanent storage. After the next power cycle the
application has to restore the stacks remanent data using the Load Remanent Data Service before
configuring the stack.

Note:

. This service is used by the protocol stack to request remanent storage of protocol
parameters by the application. The service is used if the protocol stack is used as a
RAM-based LFW or as LOM. Additionally, the application can configure the stack to use
this service.

7.2.7.1 Store Remanent Data Indication

Using this packet the stack indicates the presence of remanent data to the user application.

The packet itself is only defined to contain 1 byte. The correct amount of data is given by the stack
in the packet header’s field ulLen. The application should be able to handle up to 8192 Byte of

remanent data.

When large amounts of data are transferred and DPM is used, these data will be divided to
multiple response packets which have to be evaluated one by another.

Packet Structure Reference
typedef struct PNS_IF_STORE_REMANENT DATA_ IND_DATA Ttag

TLR_UINT8 abData[1];
} PNS_IF_STORE_REMANENT_DATA_ IND_DATA T;

typedef struct PNS_IF_STORE_REMANENT DATA_IND_Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_STORE_REMANENT DATA_IND_DATA T tData;

3 PNS_IF_STORE_REMANENT DATA_IND_T;

Packet Description

Structure PNS_1F_STORE_REMANENT_DATA_IND_T Type: Indication
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 1+n Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as unique number generated by the source

process of the packet

ulSta UINT32 0 Status not in use for indications.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 140/390

Structure PNS_1F_STORE_REMANENT_DATA_IND_T Type: Indication
Area | Variable Type Value / Description
Range
ulCmd UINT32 OX1FEA PNS_IF_STORE_REMANENT_DATA_IND-command
ulExt UINT32 X Used for fragmentation, do not change.
ulRout UINT32 X Routing, do not change.

Data | structure PNS_I1F_HANDLE_DATA_T

abData[1] UINTS][] The remanent data to be stored by application. Only the first byte
is shown in the packet definition. The application has to store the
amount of bytes reported by this packet header’s field ulLen.

Table 81: PNS_IF_STORE_REMANENT_DATA_IND_T - Store Remanent Data Indication

71.2.7.2 Store Remanent Data Response

The application has to return this packet on reception of the
PNS_IF_STORE_REMANENT_DATA_IND_T indication.

Packet Structure Reference
typedef TLR_EMPTY_PACKET _T PNS_IF_STORE_REMANENT DATA RES T;

Packet Description

Structure PNS_IF_STORE_REMANENT DATA RES_T Type: Response
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrcld UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 0 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 0 The status has to be okay for this service.

ulCmd UINT32 Ox1FEB PNS_IF_STORE_REMANENT_DATA_RES-command

ulExt UINT32 X Used for fragmentation. Fill in the value from the indication
packet.

ulRout UINT32 X Routing, do not touch.

Table 82: PNS_IF_STORE_REMANENT_DATA_RES_T - Store Remanent Data Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 141/390

7.3 Acyclic Events indicated by the Stack

This section describes the acyclic events/services that the stack indicates to the application.
Depending on the service (indication packet), the application has to perform an action or simply
has to return a response packet.

Services like “APDU Status Changed” or “Alarm Indication” will only appear while cyclic data
exchange is active. Services like “Link Status Changed”, “Error Indication” and “Start/Stop LED
Blinking” are independent of the state of cyclic data exchange.

Table 83 lists all packets of acyclic events indicated by the stack.

Packet overview of acyclic events indicated by the PROFINET IO Device stack

No. of section | Packet Command code Page
6.3.1 Read Record Indication 0x1F36 142
Read Record Response 0x1F37 144
6.3.2 Write Record Indication Ox1F3A 146
Write Record Response 0x1F3B 148
6.3.3 AR Abort Indication Indication Ox1F2A 150
AR Abort Indication Response 0x1F2B 152
6.3.4 Save Station Name Indication Ox1F1A 154
Save Station Name Response Ox1F1B 155
6.3.5 Save IP Address Indication 0x1FB8 157
Save IP Address Response 0x1FB9 158
6.3.6 Start LED Blinking Indication Ox1F1E 159
Start LED Blinking Response Ox1F1F 160
6.3.7 Stop LED Blinking Indication 0x1F20 161
Stop LED Blinking Response 0x1F21 162
6.3.8 Reset Factory Settings Indication 0x1F18 165
Reset Factory Settings Response Ox1F19 167
6.3.9 APDU Status Changed Indication Ox1F2E 168
APDU Status Changed Response Ox1F2F 169
6.3.10 Alarm Indication 0x1F30 171
Alarm Indication Response 0x1F31 173
6.3.11 Release Request Indication 0x1FD6 174
Release Request Indication Response 0x1FD7 175
6.3.12 Link Status Changed Indication 0x1F70 176
Link Status Changed Response Ox1F71 177
6.3.13 Error Indication 0x1FDC 179
Error Indication Response 0x1FDD 180
6.3.14 Read 1&M Indication 0x1F32 181
Read 1&M Response O0x1F33 183
6.3.15 Write 1&M Indication 0x1F34 189
Write 1&M Response 0x1F35 191
6.3.16 Parameterization Speedup Support Indication Ox1FF8 199
Parameterization Speedup Supported Response Ox1FF9 200
6.3.17 Event Indication Ox1FFE 202
Event Indication Response Ox1FFF 204

Table 83: Packet overview of acyclic events indicated by the PROFINET IO Device stack

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

142/390

7.3.1 Read Record Service

With the Read Record Service the stack indicates the receipt of a Read Record Request from the
IO-Controller. The application will be provided with all parameters needed to answer the request
like slot, subslot and index. The application has to return the Read Record Response packet to the
stack so that the stack can send the Read Response to the PROFINET 10-Controller.

_) Note:

. For this service, a timeout is implemented in the stack. If the application does not answer
within the timeout the stack will automatically generate a negative response the 10-
Controller. See section Timeout for Response Packets on page 27 for the timeout value.

Note:

The LOM target supports up to 32 KB of read record response data payload. The
maximum amount of the data the actual packet can hold is indicated by the indication’s
ulLenToRead field. The user must not exceed this upper size limit in order to avoid
memory corruption.

_) Note:
. From stack version V3.8.0.0: The LFW target supports up to 8 KB of read record
response data payload. For this the data must be transferred using the fragmentation

transfer described in section Packet fragmentation on page 35.

7.3.1.1

Read Record Indication

This packet indicates the receipt of a Read Record Request by the stack to the application.

Packet Structure Reference
typedef struct PNS_IF _READ RECORD_IND_DATA Ttag

{
TLR_UINT32

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32

hRecordHandle;
hDeviceHandle;
ulSequenceNum;
ulApi;

ulSlot;
ulSubslot;

ul Index;
ulLenToRead;

} PNS_IF_READ_RECORD_IND_DATA T;

typedef struct PNS_IF _READ RECORD_IND Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_I1F_READ_RECORD_IND_DATA_T tData;

} PNS_IF_READ_RECORD_IND_T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

143/390

Packet Description

Structure PNS_IF_READ_RECORD_IND_T

Type: Indication

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 32 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for indications.

ulCmd UINT32 0x1F36 PNS_IF_READ_RECORD_IND-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data

structure PNS_IF_READ_RECORD_IND_DATA T

hRecordHandle | UINT32 A stack internal identifier which belongs to this indication.

hDeviceHandle | UINT32 The device handle.

ulSequenceNum | UINT32 The sequence number used by IO-Controller for this Read
Record Request.

ulApi UINT32 The API the 10-Controller wants to read.

ulSlot UINT32 The slot the 10-Controller wants to read.

ulSubslot UINT32 The subslot the 10-Controller wants to read.

ul Index UINT32 The index the 10-Controller wants to read.

ulLenToRead UINT32 1..n The number of bytes the 10-Controller requested. If the stack is

accessed using DPM or SHM n may be up to 1024 Bytes. If the
Protocol Stacks AP Queue is directly programmed, n may be up
to 32768.

Table 84: PNS_IF_READ_RECORD_IND_T - Read Record Indication

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface
7.3.1.2

The application has to send this packet as response to a Read Record Indication.

144/390

Read Record Response

Note:

The application will not receive any feedback if the stack was able to successfully send
the Read Record Response to the |I0-Controller. However, if the Read Record Response
packet has not been correctly received at the 10-Controller or the stack for some other
reason was not able to answer to the 10-Controller, this will be indicated to application
using the Error Indication service (see section 6.3.13).

Packet Structure Reference
typedef struct PNS_IF _READ _RECORD_RSP_DATA Ttag

TLR_UINT32 hRecordHandle;

TLR_UINT32 hDeviceHandle;

TLR_UINT32 ulSequenceNum;

TLR_UINT32 ulApi;

TLR_UINT32 ulSlot;

TLR_UINT32 ulSubslot;

TLR_UINT32 ul Index;

TLR_UINT32 ulReadlLen;

/* PROFINET error code, consists of ErrCode, ErrDecode, ErrCodel and ErrCode2 */
TLR_UINT32 ulPnio;

TLR_UINT16 usAddValuel;

TLR_UINT16 usAddValue2;

TLR_UINT8 abRecordData[PNS_1F_MAX_RECORD_DATA LEN];

3} PNS_IF_READ_RECORD_RSP_DATA T;
typedef struct PNS_IF_READ _RECORD_RSP_Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_READ_RECORD_RSP_DATA_T tData;
} PNS_IF_READ_RECORD_RSP_T;
Packet Description
Structure PNS_I1F_READ_RECORD_RSP_T Type: Response
Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of CMDEV-task process queue
ulSrc UINT32 Source queue handle of AP-task process queue
ulDestld UINT32 |0 Destination End Point Identifier not in use, set to zero for
compatibility reasons
ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.
ulLen UINT32 40 +n Packet data length in bytes. n is the value of ulReadLen.
ulld UINT32 0..2%-1 Packet identification as unique number generated by the
source process of the packet
ulSta UINT32 0 The status has to be okay for this service.
ulCmd UINT32 | Ox1F37 PNS_IF_READ_RECORD_RES-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 145/390

Structure PNS_1F_READ_RECORD_RSP_T Type: Response
Area | Variable Type Value / Description
Range
ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_READ_RECORD_RSP_DATA T

hRecordHandle UINT32 A stack internal identifier which belongs to this indication.
hDeviceHandle UINT32 The device handle

ulSequenceNum UINT32 The sequence number passed in the indication.

ulApi UINT32 The API the |IO-Controller wants to read.

ulSlot UINT32 The slot the 10-Controller wants to read.

ulSubslot UINT32 The subslot the 10-Controller wants to read.

ul Index UINT32 The index the 10-Controller wants to read.

ulReadLen UINT32 0..n The record data length read. N shall be smaller or equal

than value of indication’s ulLenToRead field.

ulPnio UINT32 PROFINET error code, consists of ErrorCode,
ErrorDecode, ErrorCodel and ErrorCode2. See section
“PROFINET Status Code”.

usAddvaluel UINT16 Additional Value 1. This value is reserved for usage within
Profiles and shall be set to zero by default.

usAddvalue2 UINT16 Additional Value 2. This value is reserved for usage within
Profiles and shall be set to zero by default.

abRecordData[1024] | UINTS][] Read record data. The array must not be larger than the
value in indication’s ulLenToRead field.

Table 85: PNS_IF_READ_RECORD_RSP_T - Read Record Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 146/390

7.3.2 Write Record Service

With the Write Record Service the stack indicates the receipt of a Write Record Request from the
IO-Controller. The application will be provided with parameters contained in the request like slot,
subslot, index and the data. It has to handle the data (e.g. send it to configure modules). It has to
return the Write Record Response packet to the stack so that the stack can answer the request
from the 10-Controller.

If the Write Record is received by the application during connection establishment it is
recommended to not directly configure the submodule with the parameters but to wait for the
Parameter End Indication.

Note:

From stack version V3.8.0.0: The LFW target supports up 8 KB of write record indication
data payload. For this the data must be transferred using the fragmentation transfer
described in section Packet fragmentation on page 35. The application might pre-
calculate the size of the unfragmented packet using the data field ulLentoWrite which is
transferred in the first fragment.

7.3.2.1 Write Record Indication

With this packet the receipt of a Write Request is indicated by the stack to application. It contains
the data sent by the PROFINET IO-Controller.

Packet Structure Reference
typedef struct PNS_IF WRITE_RECORD_IND DATA Ttag

TLR_UINT32 hRecordHandle;

TLR_UINT32 hDeviceHandle;

TLR_UINT32 ulSequenceNum;

TLR_UINT32 ulApi;

TLR_UINT32 ulSlot;

TLR_UINT32 ulSubslot;

TLR_UINT32 ul Index;

TLR_UINT32 ulLenToWrite;

TLR_UINTS8 abRecordData[PNS_IF_MAX RECORD_DATA LEN];
} PNS_IF_WRITE_RECORD_IND_DATA T;

typedef struct PNS_IF WRITE_RECORD_ IND_Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_WRITE_RECORD_IND_DATA_T tData;

} PNS_IF_WRITE_RECORD_IND T;

Packet Description

Structure PNS_1F_WRITE_RECORD_IND_T Type: Indication
Area| Variable Type Value / Description
Range

Head structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue
ulSrc UINT32 Source queue handle of AP-task process queue
ulDestld UINT32 |0 Destination End Point Identifier not in use, set to zero for

compatibility reasons

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

147/390

Structure PNS_IF_WRITE_RECORD_IND_T

Type: Indication

Area| Variable Type Value / Description
Range

ulSrclid UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 |32 +n Packet data length in bytes. n is the value of ulLenToWrite.

ulld UINT32 |0..2%2-1 Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 |0 Status not in use for indications.

ulCmd UINT32 [Ox1F3A PNS_IF_WRITE_RECORD_IND-command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 |x Routing, do not touch

Data | structure PNS_IF_WRITE_RECORD_IND_DATA T

hRecordHandle UINT32 A stack internal identifier which belongs to this indication.

hDeviceHandle UINT32 The device handle

ulSequenceNum UINT32 The sequence number used by 10-Controller for this Write
Record Request.

ulApi UINT32 The API the 10-Controller wants to write to.

ulSlot UINT32 The slot the 10-Controller wants to write to.

ulSubslot UINT32 The subslot the 10-Controller wants to write to.

ul Index UINT32 The index the 10-Controller wants to write to.

ulLenToWrite UINT32 |1..n The length of write record data. If the stack is accessed using
DPM or SHM n may be up to 1024 Bytes. If the Protocol Stacks
AP Queue is programmed directly, n may be up to 32768.

abRecordData[1024] | UINTS][] The write record data. The actual length of the array depends

on ulLenToWrite field.

Table 86: PNS_IF_WRITE_RECORD_IND_T - Write Record Indication

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 148/390
7.3.2.2 Write Record Response

In order to respond to a Write Record Indication, the application has to send this packet to the
stack.

Note:

The application will not get any feedback if the stack was able to successfully send the
Write Record Response to the 10-Controller. However, if a problem concerning the Write
Record Response packet occurred or the protocol stack for some other reason was not
able to answer to the 10-Controller this will be indicated to application using the Error
Indication Service (see section 6.3.13).

Packet Structure Reference

typedef struct PNS_IF WRITE_RECORD_ RSP _DATA Ttag
{
TLR_UINT32 hRecordHandle;
TLR_UINT32 hDeviceHandle;
TLR_UINT32 ulSequenceNum;
TLR_UINT32 ulApi;
TLR_UINT32 ulSlot;
TLR_UINT32 ulSubslot;
TLR_UINT32 ul Index;
TLR_UINT32 ulWritelLen;
/* PROFINET error code, consists of ErrCode, ErrDecode, ErrCodel and ErrCode2 */
TLR_UINT32 ulPnio;
TLR_UINT16 usAddValuel;
TLR_UINT16 usAddValue2;
} PNS_IF_WRITE_RECORD_RSP_DATA T;

typedef struct PNS_IF WRITE_RECORD_RSP_Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_WRITE_RECORD_RSP_DATA T tData;

} PNS_IF_WRITE_RECORD_RSP_T;

Packet Description

Structure PNS_IF_WRITE_RECORD_RSP_T Type: Response
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 40 Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 See below.

ulCmd UINT32 0x1F3B PNS_IF_WRITE_RECORD_RES-command

ulExt UINT32 0 Extension use for multii-packets transfers, do not touch

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 149/390

Structure PNS_1F_WRITE_RECORD_RSP_T Type: Response
Area | Variable Type Value / Description
Range
ulRout UINT32 X Routing, do not touch
Data | structure PNS_IF_WRITE_RECORD_RSP_DATA_T
hRecordHandle | UINT32 A stack internal identifier which belongs to this indication.
hDeviceHandle | UINT32 The device handle
ulSequenceNum | UINT32 The sequence number passed in the indication.
ulApi UINT32 The API the IO-Controller wants to write to.
ulSlot UINT32 The slot the 10-Controller wants to write to.
ulSubslot UINT32 The subslot the 10-Controller wants to write to.
ul Index UINT32 The index the I0-Controller wants to write to.
ulWritelLen UINT32 The record data length written.
ulPnio UINT32 PROFINET error code, consists of ErrCode, ErrDecode,
ErrCodel and ErrCode2. See section “PROFINET Status
Code”.
usAddvaluel UINT16 Additional Value 1. This value is reserved for usage within
Profiles and shall be set to zero by default.
usAddVvalue2 UINT16 Additional Value 2. This value is reserved for usage within
Profiles and shall be set to zero by default.

Table 87: PNS_IF_WRITE_RECORD_RSP_T - Write Record Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 150/390

7.3.3

AR Abort Indication service

With this service the stack informs the application that a formerly established connection to the 10-
Controller no longer exists. Possible reasons are:

The stack did not receive cyclic frames from 10-Controller

The 10-Controller closed the connection (RPC Release, RPC Abort, abort alarm)
The application disallowed communication (Set Bus state OFF)

The application reconfigured the stack using Channel Init or Configuration Reload
The System Redundancy Takeover Timeout occurred.

7.3.3.1

Note:

If an AR disconnects it is required to invalidate (set to zero) or apply substitute values to
the consumer process data in most cases. In order to do so, the stack needs write
access to the consumer process data image. Therefore, if the application does not
update the consumer data periodically or does not use the event service, it is required,
that the application allows the stack to update the consumer process data image by
updating from the consumer process data image.

Note:
The application must send a response.

Note:

If bit “Generate Check Indications for unused modules” (D13) in ulSystemFlags of
service Set Configuration Request is set to 1 and the Shared Device function is used
then the stack sends Check Indications after an AR Abort.

Note:
The stack sends an Event Indication with
PNS_IF_IO_EVENT_CONSUMER_UPDATE_REQUIRED = 0x00000002 to the

application after an AR Abort. The application must read the input data once when
receiving this Event Indication.

AR Abort Indication Indication

With this packet the stack informs the application that the established connection no longer exists.
This is informative for the application.

Packet Structure Reference
typedef struct PNS_IF_AR ABORT_IND_IND DATA Ttag

TLR_UINT32 hDeviceHandle;
TLR_UINT32 ulPnio;
} PNS_IF_AR_ABORT_IND_IND_DATA T;

typedef struct PNS_IF_AR_ABORT_IND_IND_Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_I1F_AR_ABORT_IND_IND_DATA_T tData;

} PNS_IF_AR_ABORT_IND_IND T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

151/390

Packet Description

Structure PNS_IF_AR_ABORT IND_IND_T

Type: Indication

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of CMDEV-task process queue
ulSrc UINT32 Source queue handle of AP-task process queue
ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons
ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 8 Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet
ulSta UINT32 0 Status not in use for indications.
ulCmd UINT32 Ox1F2A PNS_IF_AR_ABORT_IND-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_IF_AR_ABORT_IND_IND _DATA_T
hDeviceHandle | UINT32 The device handle.
ulPnio UINT32 PROFINET error code, consists of ErrCode, ErrDecode,
ErrCodel and ErrCode2. See section “PROFINET Status
Code”".

Table 88: PNS_IF_AR_ABORT_IND_IND_T - AR Abort Indication

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 152/390

7.3.3.2 AR Abort Indication Response
The application has to return this packet to the stack.
Packet Structure Reference

typedef struct PNS_IF _HANDLE DATA Ttag

TLR_UINT32 hDeviceHandle;
} PNS_IF_HANDLE_DATA T;

typedef struct PNS_IF_HANDLE PACKET Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_HANDLE DATA T tData;

3 PNS_IF_HANDLE_PACKET T;

typedef PNS_IF_HANDLE_PACKET T PNS_IF_AR_ABORT_IND_RSP_T;

Packet Description

Structure PNS_1F_AR_ABORT_IND_RSP_T Type: Response
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrcld UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 4 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 The status has to be okay for this service.

ulCmd UINT32 0x1F2B PNS_IF_AR_ABORT_RES-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | Structure PNS_IF_HANDLE_DATA_T

hDeviceHandle | UINT32 The device handle.

Table 89: PNS_IF_AR_ABORT_IND_RSP_T - AR Abort Indication Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 153/390
7.3.4 Save Station Name Service

With this service the stack indicates to the application that a DCP Set NameOfStation request has
been received. The new NameOfStation is automatically set by the stack. If the application
configured the stack using packets, the application must be able to store the station name into non-
volatile memory. The station name must be restored on power up by means of the Set
Configuration Request packet. The correct application behavior is shown in the following figure.

[Receive Save Station Mame Ind)

hRemapent I=0

true false

[Stere Station Mame into non-volatile memerg.r Delete stored Station Mame in non-volatile memergr)

=

Generate Save Station Mame Rsp

Figure 18: Desired Application behavior on Save Station Name Indication

Note
If the flag bRemanent is not set the application shall delete the permanently stored
Station Name and use an empty Station Name after the next PowerUp cycle.

This is a certification relevant action required to be implemented by application.

Note: The application can configure the stack to save the NameOfStation on its own. See bit
D17 in Table 34.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 154/390

7.3.4.1 Save Station Name Indication

The stack sends this packet to the application to indicate the change of NameOfStation.

Packet Structure Reference

typedef struct PNS_IF_SAVE_STATION NAME_IND_DATA Ttag
TLR_UINT16 usNamelLen;
TLR_UINT8 bRemanent;
TLR_UINT8 abNameOfStation[PNIO_MAX_NAME_OF STATION];

} PNS_IF_SAVE_STATION_NAME_IND_DATA T;

typedef struct PNS_IF_SAVE_STATION_NAME_ IND_Ttag
TLR_PACKET_HEADER_T tHead;
PNS_IF_SAVE_STATION_NAME_IND_DATA T tData;

} PNS_IF_SAVE_STATION_NAME_IND_T;

/* Response packet */
typedef TLR_EMPTY_PACKET T PNS_IF_SAVE_STATION _NAME_RSP_T;

Packet Description

Structure PNS__1F_SAVE_STATION_NAME_IND_T Type: Indication
Area| Variable Type Value / Description
Range

Head structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 |0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32|0...2%2-1 | Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 | 243 Packet data length in bytes

ulld UINT32|0...2%2-1 | Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 |0 Status not in use for indications.

ulCmd UINT32 | OX1F1A PNS_IF_SAVE_STATION_NAME_IND-Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 | x Routing, do not touch

Data | structure PNS_IF_SAVE_STATION_NAME_IND_DATA_ T

usNamelLen UINT16 | 0..240 Length of the new NameOfStation.

bRemanent UINT8 |0 Do not save the new NameOfStation remanent.
1 Save the NameOfStation remanent.

abNameOfStation[240] | UINTSJ] The new NameOfStation as ASCII byte-array.

For the station name, only small characters are allowed.

Table 90: PNS_IF_SAVE_STATION_NAME_IND_T - Save Station Name Indication

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

155/390

7.3.4.2

Save Station Name Response

The application acknowledges the indication with this packet.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T

Packet Description

PNS_IF_SAVE_STATION_NAME_RSP_T;

Structure PNS_IF_SAVE_STATION_NAME_RSP_T

Type: Response

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 0 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 See below.

ulCmd UINT32 0x1F1B PNS_IF_SAVE_STATION_NAME_RES-Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 91: PNS_IF_SAVE_STATION_NAME_RSP_T - Save Station Name Response

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 156/390
7.3.5 Save IP Address Service

With this service the stack indicates to the application that a DCP Set IP request was received. The
new IP is automatically set by the stack. The application is informed about the new IP address. If
the application configured the stack using packets, the application must be able to store the IP
address parameters into non-volatile memory. The IP address parameters must be restored on
power up by means of Set Configuration Request packet.

The correct application behavior is shown in the following figure.

!

[Receive Save IP Address Indj

bRemanent |=0

falze

[Stm‘e TP Address into non-volatile 111e111m3-‘j (Set IP Address to zero in non-volatile 111e111m}-'j

[Generate Save IP Address Rspj

Figure 19: Desired application behavior on Save IP Address Indication

_) Note:
. If the flag bRemanent is not set the application shall set the permanently stored IP
parameters to 0.0.0.0 and use IP 0.0.0.0 after the next PowerUp cycle.

This is a certification relevant action required to be implemented by application.

_) Note:
. The application can configure the stack to save the IP parameters by itself,
see bit D17 in Table 34.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

157/390

7.35.1 Save IP Address Indication

This packet indicates the receipt of a DCP Set IP request by the stack.

Packet Structure Reference
typedef struct PNS_IF_SAVE_IP_ADDR_IND_DATA Ttag

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINTS8

ul IpAddr;
ulNetMask;
ulGateway;
bRemanent;

3 PNS_IF_SAVE_IP_ADDR_IND_DATA_T;

typedef struct PNS_IF _SAVE_IP_ADDR_IND_Ttag

TLR_PACKET_HEADER_T
PNS_IF_SAVE_IP_ADDR_IND_DATA T
} PNS_IF_SAVE_IP_ADDR_IND_T;

Packet Description

tHead;
tData;

Structure PNS_IF_SAVE_IP_ADDRESS_IND_T

Type: Indication

Area

Variable

Type Value /
Range

Description

Head

structure TLR_PAC

KET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 13 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for indications.

ulCmd UINT32 0x1FB8 PNS_IF_SAVE_IP_ADDR_IND-Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data

structure PNS_IF_SAVE_IP_ADDRESS_IND_DA

TA_T

ul IpAddr UINT32 The new IP address.

ulNetMask UINT32 The new network mask.

ulGateway UINT32 The new gateway address.

bRemanent UINT8 0 Do not save the new IP parameters remanent.

Save the IP parameters remanent.

Table 92: PNS_IF_SAVE_IP_ADDRESS_IND_T - Save IP Address Indication

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 158/390

7.3.5.2 Save IP Address Response

The application has to return this packet.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T PNS_IF_SAVE_IP_ADDR RSP T;

Packet Description

Structure PNS_1F_SAVE_I1P_ADDRESS_RSP_T Type: Response
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 0 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 See below.

ulCmd UINT32 0x1FB9 PNS_IF_SAVE_IP_ADDRESS_RSP-Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 93: PNS_IF_SAVE_IP_ADDRESS RSP_T - Save IP Address Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 159/390

7.3.6 Start LED Blinking Service

The stack informs the application about the receipt of a DCP Set Signal request with this service.
The application shall start blinking with an appropriate LED immediately. The LED shall blink with
the specified frequency.

_) Note:

. If the stack is used as LOM and is configured to use LEDs and if a valid Blinking LED-
Name (see section) is given the stack will automatically cause the LED to blink. This
indication is only informative.

7.3.6.1 Start LED Blinking Indication

With this indication packet the stack informs the application about the receipt of a DEC SET Signal
Request.

Packet Structure Reference

typedef struct PNS_IF_START LED BLINKING_IND_DATA Ttag

TLR_UINT32 ulFrequency;
} PNS_IF_START_LED_BLINKING_IND_DATA T;

typedef struct PNS_IF_START_LED_BLINKING_IND_Ttag
TLR_PACKET_HEADER_T tHead;

PNS_IF_START_LED BLINKING_IND DATA T tData;
} PNS_IF_START_LED BLINKING_IND_T;

Packet Description

Structure PNS_1F_START_LED_BLINKING_IND_T Type: Indication
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 4 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for indications.

ulCmd UINT32 Ox1F1E PNS_IF_START_LED_BLINKING_IND-Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_START _LED_BLINKING_IND_DATA T

ulFrequency UINT32 The frequency the LED shall blink with.

Table 94: PNS_IF_START_LED_BLINKING_IND_T - Start LED Blinking Indication

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

160/390

7.3.6.2

Start LED Blinking Response

The application shall return this response packet. If blinking with the LED could not be started, the
packet shall contain a negative status.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T

Packet Description

PNS_IF_START_LED_BLINKING_RSP_T;

Structure PNS_IF_START_LED_BLINKING_RSP_T

Type: Response

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 0 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 See below.

ulCmd UINT32 Ox1F1F PNS_IF_START_LED_BLINKING_RES-Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 95: PNS_IF_START_LED_BLINKING_RSP_T - Start LED Blinking Response

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

161/390

7.3.7

7.3.7.1

Stop LED Blinking Service
The stack informs the application to stop blinking with the appropriate LED.

Note:

If the stack is used as LOM and is configured to use LEDs (see section) and if a valid
Blinking LED-Name (see section) is given the stack will automatically blink with the LED

and this indication is only informative.

Stop LED Blinking Indication

The indication packet is sent from the stack to inform the application to stop blinking with the LED.

Packet Structure Reference

typedef TLR_EMPTY_PACKET T

Packet Description

PNS_IF_STOP_LED_BLINKING_IND_T;

Structure PNS_IF_STOP_LED_BLINKING_IND_T

Type: Indication

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 0 Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 0 Status not in use for indications.

ulCmd UINT32 0x1F20 PNS_IF_STOP_LED_BLINKING_IND-Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 96: PNS_IF_STOP_LED_BLINKING_IND_T - Stop LED Blinking Indication

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 162/390

7.3.7.2 Stop LED Blinking Response

The application shall return this response packet.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T PNS_IF_STOP_LED BLINKING_RSP_T;

Packet Description

Structure PNS_IF_STOP_LED BLINKING_RSP_T Type: Response
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ullLen UINT32 0 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 See below.

ulCmd UINT32 0x1F21 PNS_IF_STOP_LED_BLINKING_RES-Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 97: PNS_IF_STOP_LED_BLINKING_RSP_T - Stop LED Blinking Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

163/390

7.3.8 Reset Factory Settings Service

The stack indicates to the application, that a “Reset to Factory Settings” request has been received
via DCP. If the application has configured the stack using packets, the application shall now reset
some values within the non-volatile memory. The reset values must be restored on power up by

means of a Set Configuration Request packet.

The PROFINET specification defines different types of “Reset to Factory”. Each type defines which
data the application shall reset. The correct application behavior is shown in the following figure.

[Receive Reset Factory Settings Ind)

[Check Type of 'Resetto Factnw')

[If required]
Reset MameOfStation and IP Address
in non-volatile memaory

[if required]
Reset any |&M data
in non-valatile memory

[if required]
Resetany (subymodules-data
in non-volatile memory

Y

[if required]
Remove any remanent data from last
Store Remanent Data Indication
from non-volatile memory

[Generate Reset Factory Settings Rsp)

Figure 20: Application behavior on Reset Factory Settings Indication

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

164/390

The application has to use the following reset values as default:

Parameter Reset Value

NameOfStation “" (empty string)

IP Address 0.0.0.0

Network Mask 0.0.0.0

Gateway 0.0.0.0

1&M1-1&M3 Set all elements to “ “ (space character, 0x20).
1&M4 Set all elements to zero (0x00).

Exception:
The application has implemented a profile which is using
1&M4 and the used profile forbids to reset I&M4 data.

Remanent Data From Store Remanent Data Service

Remove

(sub)modules data

If any (sub)module stores own configuration parameters in
non-volatile memory, they should be set to their defaults.

_) Notes:

. PROFINET specifies that the receipt of a Reset to factory settings Request shall
automatically stop any running cyclic communication. This is done automatically by the
stack. The stack indicates this with an Abort Indication service to the application.

If the stack is configured using a SYCON.net database then the stack will automatically
change the IP parameters and NameOfStation stored in the database to the default

values.

If the stack is configured using Set Configuration Service the internally stored parameters
will also be changed by the stack in the way that e.g. after a Channellnit the default

values will be used.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

165/390

7.3.8.1

The indication packet sent by the stack.

Packet Structure Reference

typedef struct

TLR_UINT16 usResetCode;

} PNS_IF_RESET_FACTORY_ SETTINGS_IND_DATA T;

typedef struct

TLR_PACKET HEADER T
PNS_IF_RESET_FACTORY_SETTINGS_IND _DATA T tData;

} PNS_IF_RESET_FACTORY_SETTINGS_IND_T;

Packet Description

Reset Factory Settings Indication

tHead;

Structure PNS_IF_RESET_FACTORY_SETTINGS_IND_T

Type: Indication

Area | Variable Type Value / Range | Description
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of CMDEV-task process queue
ulSrc UINT32 Source queue handle of AP-task process queue
ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons
ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 2 Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as unique number generated by the
source process of the packet
ulSta UINT32 0 Status not in use for indications.
ulCmd UINT32 0x1F18 PNS_IF_RESET_FACTORY_SETTINGS_IND-Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 0 Routing not in use, set to zero for compatibility reasons
Data | structure PNS_IF_RESET_FACTORY_SETTINGS_IND_DATA T
usResetCode UINT16 The reset code, see the table.

Table 98: PNS_IF_RESET_FACTORY_SETTINGS_IND_T - Reset Factory Settings Indication

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

166/390

The requested type of reset is indicated to the application in parameter usResetCode (it has the
same coding as the DCP BlockQualifier with option ControlOption and suboption
SuboptionResetToFactory). Parameter usResetCode defines which data the application

shall reset:
Name Value | Description
PNS_IF_RESET_FACTORY_SETTINGS | 2 Reset application data in interface

_IF_APPLICATION

Reset data which have been stored permanently in submodules and
modules to factory values.

- Manufacturer specific record data shall be set to factory values.
- All 1&M data shall be set also to factory values.

The stack does not support this suboption. Reserved for future
implementation.

PNS_IF_RESET_FACTORY_SETTINGS
_IF_COMMUNICATION

4

Reset communication parameter in interface

All parameters active for the interface or the ports and the ARs shall be
set to the default value and reset if permanently stored. This mode is
intended to set the addressed communication interface of a device into
a state which is almost similar to the “out of the box” state.

In particular these are:

- NameOfStation shall be set to “” (empty string)

- IP suite parameter shall be setto 0.0.0.0

- DHCP parameters (if available) shall be reset

- All PDev parameters shall be set to factory values (The stack resets
these values internally)

- Parameters adjusted by SNMP, like sysContact, sysName, and
sysLocation from MIB-II (The stack resets these values internally)

wn

Observe that all I&M data shall not be set to factory values!

In case, the application takes care of the remanent data (i.e. uses Load
Remanent Data Service and Store Remanent Data Service) but I&M
requests are handled internally by the stack (which means that flag
PNS_IF_SYSTEM_STACK_HANDLE_I_M_ENABLED is set by the Set
Configuration Request), the application should not remove the
remanent data, because the stack preserves I&M data inside of the
remanent data. Else the application should reset (remove)

remanent data.

PNS_IF_RESET_FACTORY_SETTINGS
_IF_ENGEINEERING

6

Reset engineering parameter in interface

Reset engineering parameters which have been stored permanently in
the 10C or 10D to factory values.

- If a node is able to switch its functionality from IOC to 10D and vice
versa via engineering system, the factory functionality shall be
activated.

- An application program loaded by an engineering system shall be
reset (or removed).

- A configuration loaded by an engineering system shall be reset (or
removed).

The stack does not support this suboption, reserved for future
implementation.

PNS_IF_RESET_FACTORY_SETTINGS
_IF_ALL

8

Reset all stored data in interface

Reset all stored data in the 10D or 10C to its factory default values.
This covers all data related to application data (2), communication (4)
and engineering parameters (6).

The stack does not support this suboption on the network but
uses this code to indicate old DCP-reset service
(SuboptionFactoryReset) to the application.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 167/390

Name Value | Description
PNS_IF_RESET_FACTORY_SETTINGS | 16 Reset all stored data in device
_DEVICE_ALL

Reset all data stored in the 10D or I0C to its factory values. This
service shall reset the communication parameters of all interfaces of
the device and should reset all parameters of the device.

This mode is intended to set the device into a state which is similar to
the “out of the box” state.

It includes parameters adjusted by SNMP.

The stack does not support this suboption, because it supports
only one interface.

PNS_IF_RESET_FACTORY_SETTINGS | 18 Reset and restore data in device

_DEVICE_RESTORE Reset installed software revisions to factory values.

The stack does not support this suboption.

Table 99: Possible values of the reset code

Note:
GSDML attribute ResetToFactoryModes has following relation to the reset code:
ResetToFactoryModes = usResetCode / 2
For example: usResetCode = 4, then ResetToFactoryModes = 2.

7.3.8.2 Reset Factory Settings Response

The application shall return this packet.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T PNS_IF_RESET_FACTORY_SETTINGS_RSP_T;

Packet Description

Structure PNS_IF_RESET_FACTORY_SETTINGS_RSP_T Type: Response
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ullLen UINT32 0 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 See below.

ulCmd UINT32 0x1F19 PNS_IF_RESET_FACTORY_SETTINGS_RES-Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 100: PNS_I1F_RESET_FACTORY_SETTINGS_RSP_T - Reset Factory Settings Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

168/390

7.3.9

7.3.9.1

APDU Status Changed Service

With this service the stack indicates to the application that the status field of the cyclic frames
received by the stack and sent by the PROFINET 10-Controller has changed. The new Status is
indicated.

APDU Status Changed Indication

This packet indicates the APDU status Change to application.

Packet Structure Reference

typedef struct PNS_IF_APDU_STATUS_CHANGED_IND_DATA_Ttag

TLR_UINT32 hDeviceHandle;

TLR_UINT32 ulStatus;

3 PNS_IF_APDU_STATUS_CHANGED_IND_DATA_T;

typedef struct PNS_IF_APDU_STATUS_CHANGED_IND_Ttag

TLR_PACKET_HEADER_T tHead;
PNS_IF_APDU_STATUS CHANGED_IND_DATA T tData;
} PNS_IF_APDU_STATUS_CHANGED_IND_T;
Packet Description
Structure PNS_1F_APDU_STATUS_CHANGED_IND_T Type: Indication
Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of CMDEV-task process queue
ulSrc UINT32 Source queue handle of AP-task process queue
ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons
ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ullLen UINT32 8 Packet data length in bytes
ulld UINT32 0..2%2-1 Packet identification as unique number generated by the source
process of the packet
ulSta UINT32 0 Status not in use for indications.
ulCmd UINT32 Ox1F2E PNS_IF_APDU_STATUS_IND-Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_I1F_APDU_STATUS_CHANGED_IND_DATA_T
hDeviceHandle | UINT32 The device handle
ulStatus UINT32 See Table 92: Meaning of bits of APDU status field. A change of
the Primary/Backup is not indicated to the application

Table 101 PNS_IF_APDU_STATUS_CHANGED_IND_T - APDU Status Changed Indication

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 169/390
Bit Mask Description
0x01 Bit is Cleared: IOCR is in state Backup
Bit is Set: IOCR is in state Primary
0x02 Reserved Bit 1
0x04 Bit is Cleared: Data are invalid
Bit is Set: Data are valid
0x08 Reserved Bit 2
0x10 Bit is Cleared: The provider station is in stop state
Bit is Set: The provider station is in run state
0x20 Bit is Cleared: The provider station has a problem
Bit is Set: The Provider station is fully operational
0x40 Reserved Bit 3
0x80 Reserved Bit 4

Table 102: Meaning of bits of APDU status field

7.3.9.2 APDU Status Changed Response

The application shall return this packet.

Packet Structure Reference

typedef struct PNS_IF_HANDLE DATA Ttag

TLR_UINT32 hDeviceHandle;
} PNS_IF_HANDLE_DATA T;

typedef struct PNS_IF _HANDLE PACKET Ttag

/** packet header */
TLR_PACKET_HEADER_T
/** packet data */
PNS_IF_HANDLE DATA T

} PNS_IF_HANDLE PACKET T;

typedef PNS_IF_HANDLE_PACKET_ T

tHead;

tData;

PNS_IF_APDU_STATUS_CHANGED_RSP_T;

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

170/390

Packet Description

Structure PNS_IF_APDU_STATUS_CHANGED_RSP_T

Type: Response

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 4 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 The status has to be okay for this service.

ulCmd UINT32 Ox1F2F PNS_IF_APDU_STATUS_RES-Command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data

Structure PNS_IF_HANDLE_DATA T

hDeviceHandle

UINT32

Handle to the 10-Device.

Table 103: PNS_1F_APDU_STATUS_CHANGED_RSP_T - APDU Status Changed Response

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 171/390

7.3.10 Alarm Indication Service

With this service the stack indicates the receipt of an Alarm PDU from the 10-Controller to the
application. This indication is informative for the application only.

The stack will automatically perform all actions needed to handle the alarm.
7.3.10.1 Alarm Indication

This packet informs the application about the receipt of an Alarm PDU from the 10-Controller. The
packet contains all information sent by the 10-Controller.

Packet Structure Reference

typedef struct PNS_IF_ALARM_IND_DATA Ttag
{

TLR_UINT32 hDeviceHandle;

TLR_UINT32 ulApi;

TLR_UINT32 ulSlot;

TLR_UINT32 ulSubslot;

TLR_UINT32 ulModuleld;

TLR_UINT32 ulSubmodld;

TLR_UINT16 usAlarmPriority;

TLR_UINT16 usAlarmType;

TLR_UINT16 usAlarmSequence;

TLR_BOOLEAN fDiagChannelAvailable;

TLR_BOOLEAN fDiagGenericAvailable;

TLR_BOOLEAN fDiagSubmodAvailable;

TLR_BOOLEAN fReserved;

TLR_BOOLEAN fTArDiagnosisState;

TLR_UINT16 usUserStructld;

TLR_UINT16 usAlarmDatalen;

TLR_UINT8 abAlarmData[PNS_IF_MAX_ALARM_DATA LEN];
} PNS_IF_ALARM_IND_DATA_T;

typedef struct PNS_IF_ALARM_IND_ Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_ALARM_IND_DATA T tData;

3 PNS_IF_ALARM_IND_T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 172/390

Packet Description

Structure PNS_1F_ALARM_IND_T Type: Indication

Area| Variable Type Value / Description
Range

Head structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 (O Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 |0...2% -1 | Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ulLen UINT32 (54 +n Packet data length in bytes. n is the value of
usLenAlarmData.

ulld UINT32 |0...2%2-1 | Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 |0 Status not in use for indication.

ulCmd UINT32 |O0x1F30 PNS_IF_ALARM_IND-command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 |x Routing, do not touch

Data | structure PNS_1F_ALARM_IND_DATA_T

hDeviceHandle UINT32 The device handle

ulApi UINT32 The API the alarm belongs to.

ulSlot UINT32 The slot the alarm belongs to.
ulSubslot UINT32 The subslot the alarm belongs to.
ulModuleld UINT32 The ModulelD the alarm belongs to.
ulSubmodlId UINT32 The SubmodulelD the alarm belongs to.
usAlarmPriority UINT16 The Alarm priority.

usAlarmType UINT16 The alarm type.

usAlarmSequence UINT16 The alarm sequence number.

fDiagChannelAvailable | BOOL32

fDiagGenericAvailable | BOOL32

fDiagSubmodAvailable |BOOL32

fReserved BOOL32 |0 Reserved, will be set to zero.
fArDiagnosisState BOOL32

usUserStructld UINT16 The User Structure Identifier.
usAlarmDatalen UINT16 The length of alarm data.
abAlarmData[1024] UINTS Alarm data.

Table 104 PNS_1F_ALARM_IND_T - Alarm Indication

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 173/390

7.3.10.2 Alarm Indication Response
The application shall return this packet.
Packet Structure Reference

typedef struct PNS_IF _HANDLE DATA Ttag

TLR_UINT32 hDeviceHandle;
} PNS_IF_HANDLE_DATA T;

typedef struct PNS_IF_HANDLE PACKET Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_HANDLE DATA T tData;

3 PNS_IF_HANDLE_PACKET T;

typedef PNS_IF_HANDLE_PACKET T PNS_IF_ALARM_RSP_T;

Packet Description

Structure PNS_1F_ALARM_RSP_T Type: Response

Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrcld UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 4 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 The status has to be okay for this service.

ulCmd UINT32 O0x1F31 PNS_IF_ALARM_RES-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_HANDLE_DATA_T

hDeviceHandle | UINT32 The device handle

Table 105: PNS_I1F_ALARM_RSP_T - Alarm Indication Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 174/390

7.3.11 Release Request Indication Service

With this service the stack indicates the receipt of a RPC Release Request to the application. This
indication is informative for the application. The stack will accept the release in any case.

7.3.11.1 Release Request Indication
This packet indicates the receipt of a RPC Release Request to application.
Packet Structure Reference
typedef struct PNS_IF_RELEASE_REQ_IND_DATA Ttag
TLR_UINT32 hDeviceHandle;
TLR_UINT16 usSessionKey;
} PNS_IF_RELEASE_REQ_IND_DATA_T;
typedef struct PNS_IF_RELEASE_REQ_IND_Ttag

/** packet header */

TLR_PACKET HEADER_T tHead;
/** packet data */
PNS_IF_RELEASE _REQ IND DATA_T tData;

} PNS_IF_RELEASE_REQ IND_T;:

Packet Description

Structure PNS_IF_RELEASE _REQ IND_T Type: Indication
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrcld UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 6 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for indication.

ulCmd UINT32 0x1FD6 PNS_IF_RELEASE_RECV_IND-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_I1F_RELEASE_REQ_IND_DATA_T

hDeviceHandle | UINT32 The device handle

usSessionKey |UINT16 The session key.

Table 106: PNS_1F_RELEASE_REQ IND_T - Release Request Indication

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

175/390

7.3.11.2 Release Request Indication Response
The application shall answer to the stack with this packet.
Packet Structure Reference

typedef struct PNS_IF RELEASE REQ RSP_DATA Ttag

TLR_UINT32 hDeviceHandle;
} PNS_IF_RELEASE_REQ RSP_DATA T;

typedef struct PNS_IF_RELEASE_REQ_RSP_Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_RELEASE_REQ RSP_DATA T tData;

} PNS_IF_RELEASE_REQ RSP_T;

Packet Description

Structure PNS_IF_RELEASE_REQ RSP_T

Type: Response

Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 4 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 The status has to be okay for this service.

ulCmd UINT32 O0x1FD7 PNS_IF_RELEASE_RECV_RES-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_RELEASE_REQ RSP _DATA T

hDeviceHandle | UINT32 The device handle

Table 107: PNS_I1F_RELEASE_REQ_RSP_T - Release Request Indication Response

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

176/390

7.3.12

Link Status Changed Service

With this service the stack informs the application about the current Link status. This is informative
for the application. Information from any earlier received Link Status Changed Indication is invalid
at the time when a new Link Status Changed Indication is received.

Note:
Depending on the requirements of the user application the stack is able to use different

packet commands to indicate a change of the link state. By default the generic command
RCX_LINK_STATUS_CHANGE_IND is used. However this can be changed using Set
OEM Parameters Request (PNS_IF_ SET _OEM_PARAMETERS_TYPE_7) to force the
stack to use command PNS_IF_LINK_STATUS_CHANGE_IND instead for compatibility
reasons. This command was used by previous stack versions prior to v3.5.x.

7.3.12.1

This packet indicates the new Link status to the application.

Packet Structure Reference
typedef struct PNS_IF _LINK_STATUS_DATA Ttag

TLR_UINT32

TLR_BOOLEAN
TLR_BOOLEAN

TLR_UINT32

ulPort;
FflsFullDuplex;
flsLinkUp;
ulSpeed;

} PNS_IF_LINK_STATUS DATA T;

Link Status Changed Indication

typedef struct PNS_IF_LINK_STATUS_CHANGED_IND_DATA_Ttag

PNS_IF_LINK_STATUS DATA T atLinkData[2];
} PNS_IF_LINK_STATUS_CHANGED_IND_DATA T;

typedef struct PNS_IF_LINK_STATUS CHANGED IND_Ttag {

TLR_PACKET HEADER_T tHead;
PNS_IF_LINK_STATUS_CHANGED_IND_DATA T tData;
} PNS_IF_LINK_STATUS CHANGED IND_T;
Packet Description
Structure PNS_1F_LINK_STATUS_CHANGED_IND_T Type: Indication
Area| Variable Type Value / | Description
Range
Head structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of CMDEV-task
process queue
ulSrc UINT32 Source queue handle of AP-task process queue
ulDestld UINT32 0 Destination End Point Identifier not in use, set to
zero for compatibility reasons
ulSrclid UINT32 0 ... 232 | Source End Point Identifier, specifying the origin
-1 of the packet inside the Source Process.
ulLen UINT32 32 Packet data length in bytes
ulld UINT32 0 ... 232 | Packet identification as unique number generated
-1 by the source process of the packet
ulSta UINT32 0 Status not in use for indication.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

177/390

Structure PNS_I1F_LINK_STATUS_CHANGED_IND_T

Type: Indication

Area| Variable Type Value / | Description
Range
ulCmd UINT32 0x2F8A | RCX_LINK_STATUS_CHANGE_IND-command
or
0x1F70 | PNS_IF_LINK_STATE_CHANGE_IND-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_IF_LINK_STATUS_CHANGED_IND_DATA_T
atLinkData[2] | PNS_IF_LINK_STATUS_DATA_T Link Status Information for the 2 ports.

Table 108: PNS_IF_LINK_STATUS_CHANGED_IND_T

- Link Status Changed Indication

Typically the indication will contain 2 PNS_1F_LINK_STATUS_DATA_T-elements.

structure PNS_IF_LINK_STATUS_DATA T

Area | Variable Type Value / Range

Description

ulPort UINT32

The port-number this information belongs to.

fisFullDuplex | BOOL32 | FALSE (0)

Is the established link FullDuplex? Only valid if flsLinkUp is set.

TRUE
flsLinkUp BOOL32 | FALSE (0) Is the link up for this port?
TRUE
ulSpeed UINT32 |10 or 100 If the link is up this field contains the speed of the established

link. Possible values are 10 (10 MBit/s) and 100 (100MBit/s).
Only valid if flsLinkUp is set.

Table 109: Structure PNS_IF_LINK_STATUS_DATA_T

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

178/390

7.3.12.2 Link Status Changed Response

The application shall return this packet.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T

Packet Description

PNS_IF_LINK_STATUS_CHANGED_RSP_T;

Structure PNS_IF_LINK_STATUS_CHANGED_RSP_T

Type: Response

Area | Variable ‘ Type | Value / Range | Description
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of CMDEV-task process queue
ulSrc UINT32 Source queue handle of AP-task process queue
ulDestld UINT32 |0 Destination End Point Identifier not in use, set to zero for
compatibility reasons
ulSrclid UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ullLen UINT32 |0 Packet data length in bytes
ulld UINT32 |0..2%-1 Packet identification as unique number generated by the source
process of the packet
ulSta UINT32 |0 The status has to be okay for this service.
ulCmd UINT32 | Ox2F8B RCX_LINK_STATUS_CHANGE_RES-command
or
Ox1F71 PNS_IF_LINK_STATE_CHANGE_RES-command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 |x Routing, do not touch

Table 110: PNS_IF_LINK_STATUS_CHANGED_RSP_T - Link Status Changed Response

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 179/390

7.3.13 Error Indication Service

With this service the stack informs the user application about an error having occurred. Two
different situations are possible. Either the application returned an erroneous packet to the stack
(e.g. Read Record Response with to small packet) or a (fatal) error was detected inside the stack.

_) Note:

. In case that the stack reports an error it is possible that the value ulCommand contains a
misleading value and that this command has nothing to do with the error reported in
ulErrorCode.

7.3.13.1 Error Indication
Using this packet the stack informs the application about an error.
Packet Structure Reference
typedef struct PNS_IF _USER_ERROR_IND_DATA Ttag
TLR_UINT32 ulErrorCode;
TLR_UINT32 ulCommand;
} PNS_IF_USER_ERROR_IND_DATA T;
typedef struct PNS_IF _USER_ERROR_IND_Ttag
TLR_PACKET_HEADER_T tHead;

PNS_IF_USER_ERROR_IND_DATA T tData;
3} PNS_IF_USER_ERROR_IND_T;

Packet Description

Structure PNS_1F_USER_ERROR_IND_T Type: Indication
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 8 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for indication.

ulCmd UINT32 0x1FDC PNS_IF_USER_ERROR_IND-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_USER_ERROR_IND_DATA T

ulErrorCode UINT32 The error code.
ulCommand UINT32 0 This is an error indication for internal problems inside the stack.
1..2%21 The command the application made the error.

Table 111: PNS_I1F_USER_ERROR__IND_T - Error Indication Service

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

180/390

7.3.13.2

Error Indication Response

The application shall return the indication packet as Error Indication Response packet back to the

stack.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T

Packet Description

PNS_IF_USER_ERROR_RSP_T;

Structure PNS_IF_USER_ERROR_RSP_T

Type: Response

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of CMDEV-task process queue

ulSrc UINT32 Source queue handle of AP-task process queue

ulDestld UINT32 0 Destination End Point Identifier not in use, set to zero for
compatibility reasons

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 0 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for this response.

ulCmd UINT32 0x1FDD PNS_IF_USER_ERROR_RSP-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 112: PNS_IF_USER_ERROR_RSP_T - Error Indication Response

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 181/390
7.3.14 Read I&M Service

The stack uses this service to obtain I&M information from the user application if needed. 1&MO0-4
Information records are always stored into the physical (sub)module. For instance, in case of a
modular 1/0 system, removing a (sub)module from one modular I/O block and plugging it into
another one will result in the same 1&M0-4 data when reading the 1&M0-4 data from the new
location.

Note: In order to fulfill PROFINET conformance needs, the user has to implement
at least handling of I&MO, 1&M1, 1&M2, 1&M3 and I&MO Filter data.

In addition I&MO shall be readable on every submodule. If I&M1-4 are supported,
they shall be readable on every submodule, even if they are only writable on a
specific device representant submodule.

Note: In order to fulfill PROFINET conformance needs, the user has to set the flag
“PNS_IF_IMO_FILTER_DATA DEVICE_REF” for one submodule when handling
the type PNS_IF_IM_TYPE_ IMOFILTER.

7.3.14.1 Read I1&M Indication

This indication packet is sent by the stack whenever a controller or a supervisor reads out &M
information in order to obtain the requested 1&M data.

Packet Structure Reference

typedef struct PNS_IF _READ_IM_IND_DATA Ttag
{

TLR_UINT32 ulApi;

TLR_UINT16 usSlot;

TLR_UINT16 usSubslot;

TLR_UINTS8 bIMType;

TLR_UINT8 abReserved[3];
} PNS_IF_READ_IM_IND_DATA T;

typedef struct PNS_IF _READ IM_IND_Ttag
TLR_PACKET_HEADER_T tHead;

PNS_IF_READ_IM_IND DATA T tData;
} PNS_IF_READ_IM_IND_T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

182/390

Packet Description

Structure PNS_IF_READ_IM_IND_T

Type: Indication

Area | Variable | Type ‘ Value / Range | Description
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of application task process queue
ulSrc UINT32 Source Queue-Handle of PNSIF task process queue
ulDestld UINT32 |0 Destination End Point Identifier
ulSrclid UINT32 [0...2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ullLen UINT32 |12 Packet data length in bytes. n depends on the parameter type
contained in the packet.
ulld UINT32 [0...2%2-1 Packet identification as unique number generated by the source
process of the packet
ulSta UINT32 Status not used for request.
ulCmd UINT32 |O0x1F32 PNS_IF_READ_IM_IND - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 |x Routing, do not touch
Data structure PNS_IF_READ_IM_IND_DATA T

ulApi UINT32 |0-OxFFFFFFFF | The API of the (sub)module to read the I&M data for. Ignore on
I&MO Filter data read.

usSlot UINT16 |O0-OxFFFF The Slot of the (sub)module to read the 1&M data for. Ignore on
I&MO Filter data read.

usSubslot UINT16 |O0-OxFFFF The Subslot of the (sub)module to read the I&M data for. Ignore
on 1&MO Filter data read.

bIMType UINT8 0-5, 255 The I&M record to read. (0-5: I&MO0-5, 255: I&MO Filter Data)

abReserved[3] |UINT8 Reserved for future usage / Padding

Table 113: PNS_I1F_READ_IM_IND_T — Read 1&M Indication

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

183/390

7.3.14.2 Read I1&M Response

The application shall respond to each Read I&M Indication using the Read I&M Response. The

response shall contain the requested 1&M data.

Packet Structure Reference

typedef struct PNS_IF _READ_ IM_RES DATA Ttag
{

TLR_UINT32 ulApi;

TLR_UINT16 usSlot;

TLR_UINT16 usSubslot;

TLR_UINTS8 bIMType;
TLR_UINT8 abReserved[3];
union {

/** Array of submodules describing 1&M state of submodules
* (grow Array as required)*/
PNS_IF_IMO_FILTER_DATA_T atIMOFilterData[l];

PNS_IF_IMO_DATA T tIMO;

PNS_IF_IM1 _DATA T tiIMl;

PNS_IF_IM2 DATA T tIM2;

PNS_IF_IM3_DATA T tIM3;

PNS_IF_IM4 DATA T tiM4;

PNS_IF_IM4 _DATA T tIM5;
} tData;

} PNS_IF_READ_IM_RES DATA T;
typedef struct PNS_IF _READ IM _RES Ttag
TLR_PACKET HEADER_T tHead;

PNS_IF_READ_IM RES DATA T tData;
} PNS_IF_READ_IM_RES_T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

184/390

Packet Description

Structure PNS_IF_READ_IM_RES_T

Type: Confirmation

Area | Variable | Type ‘ Value / Range | Description
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle, do not touch
ulSrc UINT32 Source Queue-Handle, do not touch
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrcld UINT32 |0..2%2-1 Source End Point Identifier, do not touch.
ullLen UINT32 |12 +n Packet data length in bytes. N depends on the returned data
ulld UINT32 |0..2%2-1 Packet identification, untouched
ulSta UINT32 Error code. Either TLR_S_OK or TLR_E_FAIL
ulCmd UINT32 | Ox1F33 PNS_IF_READ_IM_RES - Command
ulExt UINT32 |0 Extension, untouched
ulRout UINT32 |[x Routing, do not touch

Data |structure PNS_IF_READ_IM_IND_DATA_T

ulApi UINT32 | 0-OXFFFFFFFF | Same value as in indication
usSlot UINT16 | 0-OXFFFF Same value as in indication
usSubslot UINT16 | O-OxFFFF Same value as in indication
bIMType UINT8 0-5, 255 Same value as in indication

abReserved[3] | UINTS

Set to zero

tData UNION

UNION of different structures. To be filled with the requested
1&M information according bIMType and the related information
structure. (See below)

Table 114: PNS_I1F_READ_IM_RES_T — Read 1&M Response

Depending on the value of the field tbata.bIMType the correct substructure of the union has to be

filled by the user application. In case of I&M

0-5 the substructures tiImMo-tIM5 have to be used, in

case of I&MO Filter Data the array atIMOFilterData has to be filled with all (sub)modules which

have discrete |1&M data.
typedef enum

PNS_IF_IM_TYPE_IMO
PNS_IF_IM_TYPE_IM1
PNS_IF_IM_TYPE_IM2
PNS_IF_IM_TYPE_IM3
PNS_IF_IM_TYPE_IM4
PNS_IF_IM_TYPE_IM5
PNS_IF_IM_TYPE_IMOFILTER

} PNS_IF_IM TYPE E;

{1 A VA | V|
NODWNEO

Ulw

5,

According to requested 1&M Type, the following structures shall be used:

typedef struct PNS_IF_IMO_DATA_ Ttag

TLR_UINT8 abManufacturerSpecific[10];
TLR_UINT16 usManufacturerld;
TLR_UINT8 abOrder1d[20];

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

185/390

TLR_UINT8
TLR_UINT16
struct {

TLR_UINTS8
TLR_UINTS8
TLR_UINTS8
TLR_UINTS8

abSerialNumber[16];
usHardwareRevision;

bPrefix;
bX;
bY;
bzZ;

} tSoftwareRevision;
usRevisionCounter;

TLR_UINT16
TLR_UINT16
TLR_UINT16
TLR_UINT16
TLR_UINT16

usProfileld;

usProfileSpecificType;

usIMVersion;
usIMSupported;

3 PNS_IF_IMO_DATA T;

structure PNS_IF_IMO_DATA T

Area| Variable Type Value | Description
/
Range

abManufacturerSpecific UINT8[10] | O Not evaluated on PROFINET. (For compatibility with
PROFIBUS)

usManufacturerld UINT16 The Vendor ID of the device. Usually similar to the
specified in Set Configuration Request

abOrderld UINT8[20] The Order ID of the (sub)module. (padded with spaces
(0x20))

abSerialNumber UINT8[16] The Serial number of the (sub)module. (padded with
spaces)

usHardwareRevision UINT16 Hardware revision of the (sub)module

tSoftwareRevision.bPrefix | UINTS8 Character describing the software of the (sub)module.
Allowed values: ‘V', ‘R’, ‘P’, ‘U’ and ‘T’

tSoftwareRevision.bX UINT8 Function enhancement. (Major version number) of the
(sub)module.

tSoftwareRevision.bY UINT8 Bug fix (Minor version number) of the (sub)module

tSoftwareRevision.bZ UINT8 Internal Change (Build version number) of the
(sub)module

usRevisionCounter UINT16 Starting from 0, shall increment on each parameter
change.

usProfileld UINT16 The profile of the (sub)module.

usProfileSpecificType UINT16 Additional value depending on profile of the (sub)module

uslMVersion UINT16 The 1&M version. (Default value 0x0101)

us IMSupported UINT16 Bit list describing the I&M variants supported by the

(sub)module:
e 0x02 ->|&M1 Supported
e 0x04 -> |&M2 Supported
e 0x08 -> |&M3 Supported
e 0x10 -> I&M4 Supported
e 0x20 -> |&M5 Supported

Table 115: PNS_1F_IMO_DATA_T — Structure of I&MO Information

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 186/390

typedef struct PNS_IF_IM1 DATA_ Ttag

TLR_UINT8 abManufacturerSpecific[10];

TLR_UINT8 abTagFunction[32];

TLR_UINT8 abTaglLocation[22];
JPNS_IF_IM1_DATA T;

structure PNS_1F_IM1 DATA T

Area| Variable Type |Value |Description
/
Range
abManufacturerSpecific[10] | UINT8 |0 Not evaluated on PROFINET. (For compatibility with
PROFIBUS)
abTagFunction[32] UINT8 Function Tag of the (sub)module. (padded with spaces)
abTagLocation[22] UINT8 Location Tag of the (sub)module. (padded with spaces)

Table 116: PNS_I1F_IM1_DATA_T — Structure of I&M1 Information
typedef struct PNS_IF_IM2_DATA Ttag
TLR_UINT8 abManufacturerSpecific[10];
TLR_UINT8 ablnstallationDate[16];
TLR_UINT8 abReserved[38];

IPNS_IF_IM2_DATA_T:

structure PNS_I1F_IM2_DATA T

Area| Variable Type |Value |Description
/
Range
abManufacturerSpecific[10] | UINT8 |0 Not evaluated on PROFINET. (For compatibility with
PROFIBUS)
ablnstallationDate[16] UINT8 Installation Date of the (sub)module. (padded with spaces)
abReserved[38] UINT8 Reserved. Set to zero. Not evaluated by stack.

Table 117: PNS_I1F_IM2_DATA_T — Structure of I&M2 Information
typedef struct PNS_IF_IM3 DATA Ttag
TLR_UINT8 abManufacturerSpecific[10];

TLR_UINT8 abDescriptor[54];
}PNS_IF_IM3_DATA T;

structure PNS_I1F_IM3 _DATA T

Area| Variable Type |Value |Description
/
Range
abManufacturerSpecific[10] | UINT8 |0 Not evaluated on PROFINET. (For compatibility with
PROFIBUS)
abDescriptor[54] UINT8 Description text of the (sub)module. (padded with spaces)

Table 118: PNS_1F_IM3_DATA_T — Structure of I&M3 Information

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 187/390

typedef struct PNS_IF_IM4 DATA Ttag

TLR_UINT8 abManufacturerSpecific[10];
TLR_UINT8 abSignature[54];
IPNS_IF_IM4 _DATA T;

structure PNS_I1F_IM4 DATA T

Aread| Variable Type |Value |Description
/
Range
abManufacturerSpecific[10] | UINT8 |0 Not evaluated on PROFINET. (For compatibility with
PROFIBUS)
abSignature[54] UINT8 Signature generated by engineering system. (padded with
spaces, default value: ZERO)

Table 119: PNS_1F_1IM4_DATA_T — Structure of 1&M4 Information

Note: By default read of 1&M5 is not formwarded to application but rejected by protocol stack
with error code “invalid index”. If application wants to support I&M5 this needs to be
enabled using Set OEM Parameters Request with parametertype
PNS_IF SET OEM_PARAMETERS TYPE_5.

typedef struct PNS_IF_IM5 DATA Ttag
{
TLR_UINT8 abAnnotation[64];
TLR_UINT8 abOrder1d[64];
TLR_UINT16 usVendorld;
TLR_UINT8 abSerialNumber[16];
TLR_UINT16 usHardwareRevision;
struct {
TLR_UINT8 bPrefix;
TLR_UINT8 bX;
TLR_UINT8 by;
TLR_UINT8 bZ;
} tSoftwareRevision;
} PNS_IF_IM5_DATA T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 188/390

structure PNS_IF_IMO_DATA T

Area| Variable Type Value | Description
/
Range
abAnnotation UINT8[64] | 0 Manufacturer specific annotation string describing the
OEM part. Padded with spaces (0x20) to 64 byte length.
abOrderld UINT8[64] Order Id of OEM Part, padded with spaces (0x20) to 64
byte length.
usVendorld UINT16 PNO Vendorld of OEM Part.
abSerialNumber UINT8[16] Serial number of OEM Part. Padded with spaces (0x20) to
16 byte length.
usHardwareRevision UINT16 Hardware revision of the OEM part.
tSoftwareRevision._bPrefix | UINTS Character describing the software of the OEM part.
Allowed values: ‘V', ‘R’, ‘P’, ‘U’ and ‘T’
tSoftwareRevision.bX UINT8 Function enhancement. (Major version number) of the
OEM part.
tSoftwareRevision.bY UINT8 Bug fix (Minor version number) of the OEM part.
tSoftwareRevision.bZ UINT8 Internal Change (Build version number) of the OEM part.

Table 120: PNS_1F_IM5_DATA_T — Structure of I&M5 Information

I&MOFilterData is a special record identifying which submodules of an 10-Device carry distinct 1&M
data. 1&MOFilterData shall also deliver one submodule acting as device representative which
means that this submodule’s I&M data is valid for the whole I10-Device.

The I&MOFilterData response of application may contain one or more submodules in
PNS_IF_READ IM_RES DATA_T element atIMOFilterData. The confirmation packet lengths

need to be set according to the amount of submodules contained in the packet.
typedef enum

PNS_IF_IMO_FILTER_DATA_HAS_IM_DATA = 0x00000001,
PNS_IF_IMO_FILTER_DATA_MODULE_REF = 0x00000002,
PNS_IF_IMO_FILTER DATA DEVICE_REF = 0x00000004,

} PNS_IF_IMO_FILTER DATA FLAGS_E:

typedef struct PNS IF _IMO_FILTER DATA Ttag

{

~ TLR _UINT32 ulApi;
TLR_UINT16 usSlot;
TLR _UINT16 usSubslot;
TLR_UINT32 ulFlags;

} PNS_IF_IMO_FILTER_DATA_T;

structure PNS_IF_IMO_FILTER_DATA T

Area | Variable Type Value / Range | Description
ulApi UINT32 The API of the submodule.
usSlot UINT16 The slot of the submodule
usSubslot UINT16 The subslot of the submodule

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 189/390

structure PNS_IF_IMO_FILTER DATA T

Area | Variable Type Value / Range | Description

ulFlags UINT32 The properties of the submodule. If the submodule has I1&M data
the flag PNS_IF_IMO_FILTER_DATA_HAS_IM_DATA shall be
set. Otherwise the submodule will be ignored. (=The entry can
be omitted from the PNS_IF_READ_IM_RES_T) The Flag
PNS_IF_IMO_FILTER_DATA_ MODULE_REF shall be set if the
submodule I1&M data represents the module I&M data. (Hint: Use
this for physical modules with virtual submodules)
PNS_IF_IMO_FILTER_DATA_DEVICE_REF shall be set if the
submodule 1&M data represents the device I&M data. (Hint: Use
this for devices which have no pluggable modules)

Table 121: PNS_1F_IMO_FILTER_DATA_T — Structure of I&MO0 Filter Information

7.3.15 Write I&M Service

The stack uses this service to force the user application to write the given 1&M information into the
corresponding (sub)module. The 1&M information should be stored into the physical (sub)module.

_) Note:
. Writing of 1&M is only defined for I&M1-4 records.

Writing of 1&M1, 1&M2 and I&M3 records shall be supported at least for one submodule
by each PROFINET 10O Device.

Handling the 1&M4 record is optional.

Writing 1&M5 is never allowed, but the protocol stack needs to know the proper error
code (Access denied or invalid index). There for in case of write for I&M5 the indication is
generated without write data by protocol stack. The application shall respond always
using the apropiate error code.

Choosing the proper error code is required to pass certification tests:

¢ If the I&M record object is written for a submodule which implements no own 1&M dataset.
Either TLR_E_PNS_IF_APPL_IM_INVALID_INDEX or TLR_E_PNS_IF_APPL_IM ACCESS_DENIED
shall be used. This depends on if the representative 1&M submodule implements that
record object or not.

¢ |f the I&M record object is written for a submodule which implements an own 1&M dataset but
not the requested record object, the error code TLR_E_PNS_IF_APPL_IM_INVALID_INDEX must
be used.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

190/390

7.3.15.1

Write 1&M Indication

This indication is sent by the stack whenever a controller or a supervisor writes 1&M information in
order to store the given 1&M data into the (sub)module.

Packet Structure Reference
typedef struct PNS_IF_WRITE_IM_IND_DATA_Ttag

{
TLR_UINT32

TLR_UINT16
TLR_UINT16
TLR_UINT8
TLR_UINT8
union {

ulApi;
usSlot;
usSubslot;
bIMType;

abReserved[3];

PNS_IF_IM1 DATA T
PNS_IF_IM2_DATA T
PNS_IF_IM3 DATA T
PNS_IF_IM4 DATA T

} tData;

} PNS_IF_WRITE_IM_IND_DATA T;

timl;
timM2;
tiM3;
tim4;

typedef struct PNS_IF _WRITE_IM_IND Ttag

TLR_PACKET_HEADER_T
PNS_IF_WRITE_IM_IND_DATA T tData;
3 PNS_IF_WRITE_IM_IND_T;

Packet Description

tHead;

Structure PNS_IF_WRITE_IM_IND_T

Type: Indication

Area |Variable | Type ‘ Value / Range | Description

Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of application task process queue
ulSrc UINT32 Source Queue-Handle of PNSIF task process queue
ulDestld UINT32 |0 Destination End Point Identifier
ulSrclid UINT32 |0...2%2-1 Source End Point Identifier, specifying the origin of the packet

inside the Source Process.
ulLen UINT32 |12,76 Packet data length in bytes.
ulld UINT32 |0...2%2-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 Status not used for request.
ulCmd UINT32 | O0x1F34 PNS_IF_WRITE_IM_IND - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 |x Routing, do not touch

Data | structure PNS_IF_WRITE_IM_IND_DATA T
ulApi UINT32 | 0-OXFFFFFFFF | The API of the (sub)module to write the 1&M data for.
usSlot UINT16 | 0-OxFFFF The Slot of the (sub)module to read the I1&M data for.
usSubslot UINT16 | 0-OxFFFF The Subslot of the (sub)module to read the I1&M data for.
bIMType UINT8 |[1-5 The 1&M record to read. (1-4: 1&M1-4)
abReserved[3] | UINT8 Reserved for future usage / Padding

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

191/390

Structure PNS_IF_WRITE_IM_IND_T

Type: Indication

Area

Variable

Type Value / Range

Description

tData

UNION

UNION of different structures. Contains the |I&M Data to write.
Select the substructure according bIMType field. For description
of the substructures see section 6.3.14.2.

Table 122: PNS_IF_WRITE_IM_IND_T — Write I&M Indication

Depending on the value of the field tbata.bIMType the correct substructure of the union has to be
taken for evaluation at the user application. The 1&M data shall be stored in non volatile memory of

the (sub)module.

7.3.15.2

Note:

When receiving the PNS_IF_RESET_FACTORY_SETTINGS_IND packet with a reset mode
indicating that 1&M Data shall be reset, the I&M1-4 data shall be set to default
values. Except for I&M4 signature the default value is a space (0x20) filled string.

The default signature is a zero (0x00) filled string.

Write 1&M Response

The application shall respond to each Write I&M Indication using the Write I&M Response. The
ulsta field of the response header shall be set according success or failure of the write.

Packet Structure Reference
typedef struct PNS_IF _WRITE_IM_RES DATA Ttag

{

TLR_UINT32
TLR_UINT16
TLR_UINT16
TLR_UINTS
TLR_UINT8
} PNS_IF_WRITE_IM_RES DATA T;

ulApi;

usSlot;
usSubslot;
bIMType;
abReserved[3];

typedef struct PNS_IF WRITE_IM_RES Ttag

TLR_PACKET_HEADER_T tHead;
PNS_IF_WRITE_IM_RES_DATA T tData;
} PNS_IF_WRITE_IM_RES T;

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

192/390

Packet Description

Structure PNS_IF_WRITE_IM_RES_T

Type: Confirmation

Area | Variable | Type ‘ Value / Range | Description
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle, do not touch
ulSrc UINT32 Source Queue-Handle, do not touch
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrcld UINT32 |0..2%2-1 Source End Point Identifier, do not touch.
ullLen UINT32 |12 Packet data length in bytes.
ulld UINT32 |0..2%2-1 Packet identification, untouched
ulSta UINT32 Error code. Either TLR_S_OK or TLR_E_FAIL
ulCmd UINT32 | Ox1F35 PNS_IF_WRITE_IM_RES - Command
ulExt UINT32 |0 Extension, untouched
ulRout UINT32 |[x Routing, do not touch
Data |structure PNS_IF_WRITE_IM_IND_DATA_T
ulApi UINT32 | 0-OXFFFFFFFF | Same value as in indication
usSlot UINT16 | 0-OXFFFF Same value as in indication
usSubslot UINT16 | O-OxFFFF Same value as in indication
bIMType UINT8 1-5 Same value as in indication
abReserved[3] | UINT8 Set to zero

Table 123: PNS_IF_WRITE_IM_RES_T — Write I&M Response

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 193/390
7.3.16 Get Asset Service

This service is used to request asset information from the application. This assert information is
used to process a PROFINET read record service for asset record object. As this record can
become very large, the service will be used multiple times in order to request all required
information from the application.

. Notes: This service is supported since PROFINET Version V3.11.1.0.
See chapter 1.5.2 Technical Data for limitations

7.3.16.1 Get Asset Indication

This indication is sent by the protocol to request asset information from the application. The service
is used multiple times by the protocol to retrieve all information sequentially.

Packet Structure Reference

typedef struct PNS_IF_GET_ASSET_IND_DATA_Ttag PNS_IF_GET_ASSET_IND_DATA_T;

__PACKED_PRE struct _ PACKED POST PNS_IF_GET ASSET_IND_DATA Ttag

{
uintlé_t usEntryNumber ;
};

typedef struct PNS_IF_GET_ASSET_IND_Ttag PNS_IF_GET ASSET IND_T;
__PACKED_PRE struct _ PACKED_POST PNS_IF_GET_ASSET_IND_Ttag

PNS_IF_PCK_HEADER T tHead;
PNS_IF_GET_ASSET_IND_DATA_T tData;

};

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

194/390

Packet Description

Structure PNS_1F_GET_ASSET_IND_T Type: Indication
Area |Variable | Type ‘ Value / Range | Description
Head |structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of application task process queue
ulSrc UINT32 Source Queue-Handle of PNSIF task process queue
ulDestld UINT32 (O Destination End Point Identifier
ulSrclid UINT32 |0...2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 |2 Packet data length in bytes.
ulld UINT32 |0...2%2-1 Packet identification as unique number generated by the source
process of the packet
ulSta UINT32 Status not used for request.
ulcmd UINT32 | OX1F3E PNS_IF_GET_ASSET_IND - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 |x Routing, do not touch
Data structure PNS_IF_GET_ASSET_IND_DATA_T
usEntryNumber | UINT32 | 0-65534 The index of the first requested asset

Table 124: PNS_1F_GET_ASSET_IND_T — Get Asset Indication

Parameter Description

usEntryNumer

This parameter specifies the number of the first asset to return in response packet. The data model
used to represent the asset information is a simple list of assets. This field specifies the index of
the first list entry the protocol stack expects in the the response. The application is expecting to
deliver up to four asset entries from the asset list starting with the entry at index usEntryNumber.
The index counting starts from zero.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 195/390

7.3.16.2 Get Asset Response

The application shall respond the Get Asset Indication with a Get Asset Response packet. The
application can deliver up to four assets in one response packet. When the application has no
more assets to deliver, the response packet length shall be set to zero.

Packet Structure Reference

enum
PNS_IF_ASSET_TYPE_FULLINFORMATION = (0x0001),
PNS_IF_ASSET_TYPE_FIRMWAREONLY INFORMATION = (0x0002),
PNS_IF_ASSET_TYPE_HARDWAREONLY INFORMATION = (0x0003),
}:
enum
PNS_IF_ASSET_LOCATION_STRUCTURE_LEVEL = 0x01,
PNS_IF_ASSET_LOCATION_STRUCTURE_SLOTSUBSLOT = 0x02,

}:
typedef struct PNS_IF_ASSET_LOCATION_LEVEL Ttag PNS_IF_ASSET LOCATION_LEVEL T;

__PACKED_PRE struct _ PACKED POST PNS_IF_ASSET_LOCATION_LEVEL_ Ttag

uint8_t bStructureld;

uint8_t abPadding[3];

uintlé_t ausLevel[12];
}:

typedef struct PNS_IF_ASSET LOCATION_SLOTSUBSLOT Ttag
PNS_IF_ASSET_LOCATION_SLOTSUBSLOT_T;

__PACKED_PRE struct __ PACKED_POST PNS_IF_ASSET_ LOCATION_SLOTSUBSLOT Ttag

{
uint8_t bStructureld;
uint8_t abPadding[3];
uintlé_t usSlotBegin;
uintlé_t usSubslotBegin;
uintlé_t usSlotEnd;
uintle_t usSubslotEnd;

};

typedef union PNS_IF_ASSET_LOCATION_Ttag PNS_IF_ASSET LOCATION_T;
union PNS_IF_ASSET_LOCATION_ Ttag

PNS_IF_ASSET_LOCATION_LEVEL T tlLevel ;
PNS_IF_ASSET_LOCATION_SLOTSUBSLOT_ T tSlotSubslot;

}:

typedef struct PNS_IF_ASSET_DEVICEIDENTIFICATION Ttag
PNS_IF_ASSET_DEVICEIDENTIFICATION_T;

___PACKED_PRE struct __ PACKED_POST PNS_IF_ASSET_DEVICEIDENTIFICATION Ttag

uintl6_t usDeviceSublD;
uintl6_t usDevicelD;
uintl6é_t usVendorliD;
uintl6_t usOrganization;

}:
typedef struct PNS_IF_ASSET_ENTRY_Ttag PNS_IF_ASSET_ENTRY_T;

__PACKED_PRE struct __ PACKED_POST PNS_IF_ASSET_ENTRY_ Ttag

{
uintlé_t usEntryNumber ;
uint8_t bEntryType;
uint8_t bPadding;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 196/390

PNS_IF_UUID_T tIM_Uniqueldentifier;
PNS_IF_ASSET_LOCATION_T tAM_Location;
uint8_t abIM_Annotation[64];
uint8_t abIM_OrderiD[64];
uint8_t abAM_SoftwareRevision[64];
uint8_t abAM_HardwareRevision[64];
uint8_t abIM_Serial_Number[16];
uint8_t abIM_Software_Revision[4];
PNS_IF_ASSET_DEVICEIDENTIFICATION_T tAM_Deviceldentification;
uintlé_t usAM_Typeldentification;
uintle_t usIM_Hardware_Revision;

};

typedef struct PNS_IF_GET_ASSET RES DATA_Ttag PNS_IF_GET ASSET_RSP_DATA T;
__PACKED_PRE struct __ PACKED_POST PNS_IF_GET_ASSET_RES_DATA Ttag

PNS_IF_ASSET_ENTRY_T atEntries[4];
}:

typedef struct PNS_IF_GET_ASSET RSP _Ttag PNS_IF_GET ASSET RSP_T;
___PACKED_PRE struct _ PACKED POST PNS_IF_GET_ASSET RSP Ttag

PNS_IF_PCK_HEADER_T tHead;
PNS_IF_GET_ASSET RSP _DATA T tData;

};

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

197/390

Packet Description

Structure PNS_IF_GET_ASSET RSP_T

Type: Response

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle, do not touch
ulSrc UINT32 Source Queue-Handle, do not touch
ulDestld UINT32 0 Destination End Point Identifier. Not in use,
set to zero for compatibility reasons.
ulSrclid UINT32 0...2%-1 | Source End Point Identifier, do not touch.
ulLen UINT32 0, 336, Packet data length in bytes. Set according
672, 1008, | number of assets in packet.
1344
ulld UINT32 0 ... 2%2-1 | Packet identification, untouched
ulSta UINT32 Error code. Either TLR_S_OK or
TLR_E_UNKNOWN_COMMAND
ulCmd UINT32 Ox1F3F PNS_IF_GET_ASSET_RES - Command
ulExt UINT32 0 Extension, untouched
ulRout UINT32 X Routing, do not touch
Data |structure PNS_IF_GET_ASSET_RSP_DATA_ T
atEntries STRUCTI[4] Array of up to four assets
structure PNS_IF_ASSET_ENTRY_T
usEntryNumber UINT16 0-65534 Index of this asset
bEntryType UINT8 1, Asset contains full information
2, Asset contains only firmware information
3, Asset contains only hardware information
bPadding UINT8 0 Padding for alignment. Set to zero for future
compatibility.
tIM_Uniqueldentifier UuID Unique id of this asset.
tAM_Location STRUCT/UNION Location of this asset. Profinet defines two
kinds of locations: a level based location
information and a slot/subslot based location
structure PNS_IF_ASSET_LOCATION_LEVEL_T
bStructureld UINT8 1 Structure Id identifying level based asset
location
abPadding UINT8[3] 0 Padding for alignment. Set to zero for future
compatibility.
ausLevel UINT16[12] 0 to Ox3FF | Level based asset location. The first unused

level and all subsequent levels shall be set
to Ox3FF

n

tructure PNS_I1F_ASSET_LOCAT

ION_SLOTSUBSLOT_T

bStructureld

UINT8

2

Structure Id identifying slot/subslot based
asset location.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

198/390

Structure PNS_IF_GET_ASSET RSP_T

Type: Response

Area | Variable Type Value / Description
Range
abPadding UINTS8[7] 0 Padding for alignment. Set to zero for future
compatibility.
usSlotBegin UINT16 0to First slot covered by asset
OXFFFF
usSubslotBegin UINT16 0to First subslot covered by asset
OX9FFF
usSlotEnd UINT16 0to Last slot covered by asset
OXFFFF
usSubslotEnd UINT16 0to Last subslot covered by asset
OX9FFF
abIM_Annotation UINT8[64] Annotation of asset in IM encoding
abIM_OrderID UINT8[64] OrderID associated with asset
abAM_SoftwareRevision UINT8[64] Software revision encoded as UTF-8. This
field shall only set to non-zero value if field
abIM_Software_Revision can not be used.
This field is not used for hardware only
information assets
abAM_HardwareRevision UINT8[64] Hardware revision encoded as UTF-8. This
field shall only set to non-zero value if field
usIM_Hardware_Revision can not be used.
This field is not used for firmware only
information assets.
abIM_Serial_Number UINT8[16] Serial number associated with asset using
I&M encoding rules.
abIM_Software_Revision UINT8[4] Software revision associated with asset
using 1&M encoding rules. (Revision Prefix,
Major, Minor, Bugfix) This is the preferred
encoding. This field is not used for hardware
only information assets.
tAM_Deviceldentification | STRUCT Device identification associated with asset

structure PNS_IF_ASSET_DEVICEIDENTIFICATION_T

usDeviceSublD UINT16 0 Reserved for future definitions. Set to zero.
usDevicelD UINT16 Device ID associated with asset
usVendor 1D UINT16 Vendor ID associated with asset
usOrganization UINT16 Profile specifica value. Defaults to zero.
usAM_Typeldentification |UINT16
usIM_Hardware_Revision UINT16 Hardware revision associated with asset

using 1&M encoding rules. This is the
preferred encoding. Set to nonzero value if
field abAM_HardwareRevision is not used.
This field is not used for firmware only
information assets.

Table 125: PNS_IF_GET_ASSET_RSP_T — Get Asset Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 199/390
7.3.17 Parameterization Speedup Support

This service is used to indicate to the user application whether Parameterization Speedup is
enabled. This is the case if device shall use fast startup mode (FSU). The FSU mode requires that
the application stores all user record data and the associated parameter uuid (this service) into
non-volatile memory. On next power up, the application shall restore the user record data from non
volatile memory into the submodules before any AR is established. Afterwards, when the AR is
being established, the application may compare the stored parameter uuid with the parameter uuid
received during last connection establishment to detect if updating the parameters is required. This
service allows that the application can parameterize the submodules very early and decreases the
time until the device becomes ready for data exchange. If the parameter uuid is zero, the FSU
mode is disabled. In this case no parameters should be restored from non-volatile memory.

Note:

If the application receives a Parameterization speedup support indication containing the
NIL-UUID during connection establishment, the module parameterization shall be done
in the regular way without speedup. The same applies if the received UUID is different to
the configured one. In this case it the PLC has a different configuration.

_) Note:
. If the application does not use any user records, no special action is required on this
indication.

7.3.17.1 Parameterization Speedup Support Indication

Packet Structure Reference

struct FSUUID_Ttag /* UUID data */
TLR_UINT32 ulDatal;
TLR_UINT16 usData2;
TLR_UINT16 usData3;
TLR_UINTS8 abData4[8];
¥

typedef struct PNS_IF_PARAMET SPEEDUP_SUPPORTED_IND_DATA Ttag
FSUUID_T tFSUuid;

} PNS_IF_PARAMET_SPEEDUP_SUPPORTED_IND_DATA T;

typedef struct PNS_IF_PARAMET SPEEDUP_SUPPORTED_IND_Ttag
TLR_PACKET HEADER T tHead;
PNS_IF_PARAMET SPEEDUP_SUPPORTED_IND_DATA T tData;

} PNS_IF_PARAMET SPEEDUP_SUPPORTED_IND_T;

typedef TLR_EMPTY_PACKET T PNS_IF_PARAMET SPEEDUP_SUPPORTED_RES_T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

200/390

Packet Description

Structure PNS__1F_PARAMET_SPEEDUP_SUPPORTED_IND_T Type: Indication
Area |Variable Type Value / Range | Description
Head |structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of application task process queue
ulSrc UINT32 Source Queue-Handle of PNSIF task process queue
ulDestld UINT32 0 Destination End Point Identifier
ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ullLen UINT32 16 Packet data length in bytes.
ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet
ulSta UINT32 Status not used for request.
ulCmd UINT32 Ox1FF8 PNS_1F_PARAMET_SPEEDUP_SUPPORTED_IND- Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_IF_PARAMET_SPEEDUP_SUPPORTED_IND_DATA_T

tFSUuid

FSUUID_T

0-OXFFFFFFFF

The UUID send to the application.
TLR_UINT32 ulDatal
TLR_UINT16 usData2
TLR_UINT16 usData3
TLR_UINT8 abData4[8]

Table 126: PNS_1F_PARAMET_SPEEDUP_SUPPORTED_IND_T — Parameterization Speedup Supported Indication

7.3.17.2

Parameterization Speedup Supported Response

The application shall respond to each Speedup Supported Indication using the Speedup
Supported Response. The ulsta field of the response header shall be set according to success or
failure of the write access.

Packet Structure Reference
typedef TLR_EMPTY_PACKET T

PNS_IF_PARAMET_SPEEDUP_SUPPORTED_RES_T;

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 201/390

Packet Description

Structure PNS__1F_PARAMET_SPEEDUP_SUPPORTED_RES_T Type: Confirmation

Area | Variable | Type ‘ Value / Range | Description

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 [0...2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 |0 Packet data length in bytes

ulld UINT32 [0..2%2-1 Packet identification, untouched

ulSta UINT32 See below.

ulCmd UINT32 |Ox1FF9 PNS_IF_PARAMET_SPEEDUP_SUPPORTED_RSP - Command

ulExt UINT32 |0 Extension, untouched

ulRout UINT32 |x Routing, do not touch

Table 127: PNS_1F_PARAMET_SPEEDUP_SUPPORTED_RES_T- Parameterization Speedup Supported Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 202/390

7.3.18 Event Indication Service

Using the Event Indication Service the stack informs the user application about IO data related
events.

This service is only available if the Dual Port Memory Interface is used. It corresponds to the Event
Handler Callback service described in section 5.2.2.3 (see more details there as well).

7.3.18.1 Event Indication

The following indication packet is sent by the stack.
Note:

If an event indication is pending at the host application (no event response returned back to
firmware yet) new events are not reported using another event indication but counted. These
unreported events will be reported after the event response has been sent to the firmware. This
prevents flooding the host application with events.

Packet Structure Reference

typedef enum PNS_IF_10_EVENT_ Etag
{

PNS_IF_10_EVENT_RESERVED = 0x00000000,
PNS_IF_10_EVENT_NEW_FRAME = 0x00000001,
PNS_IF_10_EVENT_CONSUMER_UPDATE_REQUIRED = 0x00000002,
PNS_IF_I0_EVENT_PROVIDER_UPDATE_REQUIRED = 0x00000003,
PNS_IF_10_EVENT_FRAME_SENT = 0x00000004,
PNS_IF_I0_EVENT_CONSUMER_UPDATE_DONE = 0x00000005,
PNS_IF_10_EVENT_PROVIDER_UPDATE_DONE = 0x00000006,

PNS_IF_10_EVENT_MAX, /**< Number of defined events **/
} PNS_IF_I0_EVENT_E;

typedef struct

TLR_UINT16 ausEventCnt[PNS_IF_10_EVENT MAX];
3 PNS_IF_EVENT_IND_DATA T;

typedef struct
TLR_PACKET_HEADER_T tHead;

PNS_IF_EVENT_IND_DATA T tData;
3 PNS_IF_EVENT_IND_T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

203/390

Packet Description

Structure PNS_IF_EVENT_IND_T

Type: Indication

Area | Variable Type Value / Range | Description
Head |structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of application task process queue
ulSrc UINT32 Source Queue-Handle of PNSIF task process queue
ulDestld UINT32 0 Destination End Point Identifier
ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 14 Packet data length in bytes.
ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet
ulSta UINT32 Status not used for request.
ulCmd UINT32 Ox1FFE PNS_I1F_EVENT_IND- Command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_IF_EVENT_IND_DATA_T

ausEventCnt

UINT16[7]

Array of event counters. For each event the amount if
occurrence is counted since the last event indication.

Figure 21. Event Indication

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

204/390

7.3.18.2 Event Indication Response

The application shall return this packet as response to an Event Indication.

Packet Structure Reference

typedef struct

TLR_PACKET_HEADER_T
} PNS_IF_EVENT RSP_T;:

Packet Description

tHead;

Structure PNS_IF_EVENT_RSP_T

Type: Indication

Area | Variable | Type ‘ Value / Range | Description
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of application task process queue
ulSrc UINT32 Source Queue-Handle of PNSIF task process queue
ulDestld UINT32 |0 Destination End Point Identifier
ulSrclid UINT32 [0...2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ullLen UINT32 |0 Packet data length in bytes.
ulld UINT32 [0...2%2-1 Packet identification as uniqgue number generated by the source
process of the packet
ulSta UINT32 The Status.
ulCmd UINT32 |Ox1FFF PNS_IF_EVENT_RSP- Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 | X Routing, do not touch

Figure 22. Event Indication Response

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 205/390

7.4 Acyclic Events requested by the Application

This section describes all acyclic events and requests that the application can send to the stack.

The application can only use alarm services (see sections 6.4.4 and 6.4.5), if cyclic data exchange
is established. The application may use all other services at any time after the stack has been
configured.

Table 128 lists all packets of acyclic events that the application can request from the stack.

Packet overview of acyclic events of the PROFINET IO Device stack requested by the application

No. of section | Packet Command code Page
6.4.1 Get Diagnosis Request Ox1FB2 207
Get Diagnosis Confirmation Ox1FB3 208
6.4.2 Get XMAC (EDD) Diagnosis Request Ox1FE4 212
Get XMAC (EDD) Diagnosis Confirmation Ox1FE5 213
6.4.3 Process Alarm Request Ox1F52 216
Process Alarm Confirmation 0x1F53 218
6.4.4 Diagnosis Alarm Request Ox1F4C 219
Diagnosis Alarm Confirmation Ox1F4D 221
6.4.5 Return of Submodule Alarm Request Ox1F50 222
Return of Submodule Alarm Confirmation 0x1F51 224
6.4.6 AR Abort Request Service Ox1FD8 225
AR Abort Request Confirmation Ox1FD9 226
6.4.7 Plug Module Request Ox1F04 227
Plug Module Confirmation O0x1F05 229
6.4.8 Extended Plug Submodule Request 0x1F08 236
Extended Plug Submodule Confirmation 0x1F09 238
6.4.9 Pull Module Request 0x1F06 241
Pull Module Confirmation 0x1F07 242
6.4.10 Pull Submodule Request Ox1FOA 243
Pull Submodule Confirmation 0x1FOB 245
6.4.11 Get Station Name Request Ox1F8E 246
Get Station Name Confirmation Ox1F8F 247
6.4.12 Get IP Address Request Ox1FBC 248
Get IP Address Confirmation 0x1FBD 249
6.4.12.3 Add Channel Diagnosis Request Ox1F46 250
Add Channel Diagnosis Confirmation Ox1F47 252
6.4.13 Add Extended Channel Diagnosis Request Ox1F54 254
Add Extended Channel Diagnosis Confirmation Ox1F55 256
6.4.14 Add Generic Channel Diagnosis Request Ox1F58 258
Add Generic Channel Diagnosis Confirmation Ox1F59 260
6.4.15 Remove Diagnosis Request Ox1FE6 262

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 206/390
Packet overview of acyclic events of the PROFINET IO Device stack requested by the application
No. of section | Packet Command code Page
Remove Diagnosis Confirmation Ox1FE7 263

Table 128: Packet overview of acyclic events of the PROFINET IO Device stack requested by the application

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

207/390

7.4.1

Get Diagnosis Service

With this service the user application can request a collection of diagnostic data concerning the

stack.

74.1.1

Packet Structure Reference

Note:

In this service the confirmation packet is larger than the request packet. If the application
is programming the stack’s AP-Task Queue directly so the application has to provide a
buffer which is large enough to hold the confirmation data

Get Diagnosis Request

/* Get Diagnosis Request packet */

typedef TLR_EMPTY_ PACKET T

Packet Description

PNS_IF_GET_DIAGNOSIS_REQ T;

Structure PNS_IF_GET_DIAGNOSIS_REQ_T

Type: Request

Area

Variable

| Type

‘ Value / Range

Description

Head

structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ullLen UINT32 |0 PNS_IF_GET_DIAGNOSIS_REQ_SIZE - Packet data length in
bytes

ulld UINT32 [0..2%2-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 |0 Status not used for requests. Set to zero.

ulCmd UINT32 | O0x1FB2 PNS_IF_GET_DIAGNOSIS_REQ - Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 |x Routing, do not touch

Table 129: PNS_1F_GET_DIAGNOSIS_REQ_T - Get Diagnosis Request

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

208/390

7.4.1.2 Get Diagnosis Confirmation

With this packet the stack provides the collected diagnosis data to the application.

Packet Structure Reference

/* Get Diagnosis Confirmation packet */
typedef struct PNS_IF_STATUS Ttag

{
TLR_UINT32 ulPnsState;
TLR_UINT32 ulLastRslt;
TLR_UINT32 ulLinkState;
TLR_UINT32 ulConfigState;
TLR_UINT32 ulCommunicationState;
TLR_UINT32 ulCommunicationError;
TLR_UINT32 aulLineDelay[2];

3 PNS_IF_STATUS_T;

typedef struct PNS_IF_GET_DIAGNOSIS_CNF_Ttag
{

TLR_PACKET_HEADER_T tHead;
PNS_IF_STATUS_ T tData;
} PNS_IF_GET_DIAGNOSIS_CNF_T;
Packet Description
Structure PNS_1F_GET_DIAGNOSIS_CNF_T Type: Confirmation
Area Variable Type Value/ | Description
Range
Head structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32| 0 ... 232 - | Source End Point Identifier, specifying the origin of the
1 packet inside the Source Process.
ulLen UINT32 | 24 Packet data length in bytes
ulld UINT32 | 0 ... 232 - | Packet identification, untouched
1
ulSta UINT32 See below.
ulCmd UINT32 | 0xX1IFB3 | PNS_IF_GET_DIAGNOSIS_CNF - Command
ulExt UINT32 |0 Extension, untouched
ulRout UINT32 | x Routing, do not touch
Data structure PNS_I1F_STATUS_T
ulPnsState UINT32 | Bit mask | State of Protocol Stack. See below.
ulLastRslt UINT32 | Error Last Result
code
ulLinkState UINT32 | 0-3 Link State. See below.
ulConfigState UINT32 | 0-8 Configuration State. See below.
ulCommunicationState | UINT32 | 0-4 Communication State. See below.
ulCommunicationError | UINT32 Er:jor Communication Error. See below.
code

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

209/390

Structure PNS_IF_GET_DIAGNOSIS_CNF_T

Type: Confirmation

Area Variable Type Value / |Description

Range

aulLineDelay[2] UINT32 Structure containing line delay for port 0 and port 1.

aulLineDelay [0O] stores Line delay for Port O,
aulLineDelay [1] stores Line delay for Port 1.

Table 130: PNS_IF_GET_DIAGNOSIS_CNF_T - Get Diagnosis Confirmation

This function will request a diagnostic data block (the status block). The requested data will be
delivered by the confirmation message.

The parameters delivered by the confirmation message can have the following values denoting the
associated meanings:

ulPnsState

This parameter represents the PROFINET 10 Device task state. It can have one of the
following values:

Bit

Description

D16

Fiber Optic Maintenance Required Record exists for Port 1
Note: Only valid in case of fiber optic hardware.

D15

Fiber Optic Maintenance Demanded Record exists for Port 1
Note: Only valid in case of fiber optic hardware.

D14

Fiber Optic Maintenance Required Record exists for Port 0
Note: Only valid in case of fiber optic hardware.

D13

Fiber Optic Maintenance Demanded Record exists for Port 0
Note: Only valid in case of fiber optic hardware.

D12

A PROFINET Maintenance Demanded Record exists

D11

A PROFINET Maintenance Required Record exists

D10

A PROFINET Diagnosis Record with severity fault exists

D9

Fatal Error occurred

D8

Configuration is locked

D7

Network Communication is enabled

D6

Network Communication is allowed

D5

Module 0 and Submodule 1 are plugged

D4

Module 0 is plugged

D3

At least one APl is present

D2

Reserved

D1

PROFINET Stack is started

DO

Device Information is set

Table 131: Meaning of single Bits in ulPnsState

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

210/390

eLastRslt

This parameter denotes the error code of the last encountered error of the RCX/API Task,
see the TLR error codes documented in section 8 Status/Error Codes Overview.

ulLinkState
This parameter denotes the link state. The following values are supported:
Value Meaning
0 No information available
1 Physical link works correctly
2 Low speed of physical link
3 No physical link present

Table 132: Values and their corresponding Meanings of ulLinkState

ulConfigState

This parameter denotes the configuration state. It may have the following values:

Value

Meaning

Not configured

Configured with DBM Files

Error during configuration with DBM Files

Configured by application

Configuration by application is running

Error during configuration by Application

Configured with Warmstart-Parameters

Njo|lg|~AlW|IN|FL|[O

Configuration with Warmstart-Parameters is running

(0]

Error during Configuration with Warmstart-Parameters

Table 133: Values and their corresponding Meanings of ulConfigState

ulCommunicationState

This parameter denotes the communication state. It contains information regarding the
current network status of the communication channel. Depending on the implementation, all
or a subset of the definitions below is supported.

UNKNOWN #define RCX_COMM_STATE_UNKNOWN 0x0000

OFFLINE
STOP
IDLE
OPERATE

#define RCX_COMM_STATE_OFFLINE 0x0001
#define RCX_COMM_STATE_STOP 0x0002
#define RCX_COMM_STATE_IDLE 0x0003
#define RCX_COMM_STATE_OPERATE 0x0004

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 211/390

ulCommunicationError

This parameter holds the current error code of the communication channel. If the cause of
error is resolved, the communication error field is set to zero (= RCX_S_OK) again. For

possible error codes see section Status/Error Codes Overview.

aulLineDelay
This parameter represents the propagation delay for the ports 0 and 1 in nanoseconds.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

212/390

7.4.2 Get XMAC (EDD) Diagnosis Service

Using this service the application can request some statistic information from the integrated switch.

_) Note:

. The confirmation packet of this service is larger than the request packet. If the
application is programming the stacks AP-Task Queue directly the application has to
provide a buffer which is large enough to hold the confirmation data.

7.4.2.1 Get XMAC (EDD) Diagnosis Request

This request packet allows access to the statistical information of the switch.

Packet Structure Reference

typedef TLR_EMPTY PACKET T

Packet Description

PNS_IF_GET_XMAC_DIAGNOSIS REQ T;

Structure PNS_IF_GET_XMAC_DIAGNOSIS_REQ T

Type: Request

Area |Variable | Type | Value / Range | Description
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination Queue-Handle
ulSrc UINT32 Source Queue-Handle
ulDestld UINT32 |0 Destination End Point Identifier, specifying the final receiver of
the packet within the Destination Process. Set to 0 for the
Initialization Packet
ulSrcld UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process
ulLen UINT32 |0 Packet Data Length in bytes
ulld UINT32 |0..2%2-1 Packet Identification as unique number generated by the
Source Process of the Packet
ulSta UINT32 Status not used for requests. Set to zero.
ulCmd UINT32 | Ox1FE4 PNS_IF_GET_XMAC_DIAGNOSIS_REQ
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 |[x Routing, do not touch

Table 134: PNS_I1F_GET_XMAC_DIAGNOSIS_REQ_T - Get XMAC (EDD) Diagnosis Request

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

213/390

7.4.2.2 Get XMAC (EDD) Diagnosis Confirmation

This packet confirms the Get XMAC (EDD) diagnosis Request and delivers the requested data

within the structure EDD_XMAC_COUNTERS T, see Table 123 below.

Packet Structure Reference

typedef struct {
TLR_UINT32 ulFramesTransmittedOk;
TLR_UINT32 ulSingleCollisionFrames;
TLR_UINT32 ulMultipleCollisionFrames;
TLR_UINT32 ulLateCollisions;
TLR_UINT32 ulLinkDownDuringTransmission;
TLR_UINT32 ulUtxUnderflowDuringTransmission;
TLR_UINT32 ulTxFatalErrors;
TLR_UINT32 ulFramesReceivedOk;
TLR_UINT32 ulFrameCheckSequenceErrors;
TLR_UINT32 ulAlignmentErrors;
TLR_UINT32 ulFrameToolLongErrors;
TLR_UINT32 ulRuntFramesReceived;
TLR_UINT32 ulCollisionFragmentsReceived;
TLR_UINT32 ulFramesDroppedDuelLowResource;
TLR_UINT32 ulFramesDroppedDueUrxOverflow;
TLR_UINT32 ulRxFatalErrors;

} EDD_XMAC_COUNTERS T;

/* confirmation packet */
typedef struct PNS_IF _GET_XMAC_DIAGNOSIS DATA Ttag

EDD_XMAC_COUNTERS_T tXMACCounters[2];
} PNS_IF_GET_XMAC_DIAGNOSIS_ DATA T;

typedef struct PNS_IF _GET_XMAC_DIAGNOSIS_CNF_Ttag
TLR_PACKET HEADER_T tHead;

PNS_IF_GET_XMAC_DIAGNOSIS_DATA T tData;
} PNS_IF_GET_XMAC_DIAGNOSIS_CNF_T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 214/390

Packet Description

structure PNS_IF_GET_XMAC_DIAGNOSIS_CNF_T

Type: Confirmation

Area | Variable ‘ Type ‘ Value / Range | Description

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrcld UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 | 128 Packet Data Length in bytes

ulld UINT32 |0...2%2-1 Packet identification, untouched

ulSta UINT32 See below.

ulCmd UINT32 | OX00001FE5 PNS_IF_GET_XMAC_DIAGNOSIS_CNF - Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 |x Routing, do not touch

Data |structure PNS_IF_GET_XMAC_DIAGNOSIS_DATA T

tXMACCounters[| EDD_X Array containing statistics stored in XMAC counters
2] MAC_C

OUNTE

RS T

Table 135: PNS_I1F_GET_XMAC_DIAGNOSIS_CNF_T - Get XMAC (EDD) Diagnosis Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

215/390

The structure EDD_XMAC_COUNTERS_T contains the following counters collected by the statistical

information of the 2-port switch:

structure EDD_XMAC_COUNTERS_T

Variable Type Value / Description
Range

ulFramesTransmittedOk UINT32 |0...2%2-1 |Count of frames that are successfully
transmitted

ulSingleCollisionFrames UINT32 |0...2%2-1 |Count of frames that are involved into a single
collision

ulMultipleCollisionFrames UINT32 |0...2%2-1 |Count of frames that are involved into more that
one collisions

ulLateCollisions UINT32 |0...2%2-1 |Laterthan 512 bit times into the transmitted
packet

ulLinkDownDuringTransmission UINT32 |0...2%2-1 |Count of the times that a frame was transmitted
during link down

ulUtxUnderflowDuringTransmission |UINT32 |0..2%-1 |UTX FIFO underflow at transmission time

ulTxFatalErrors UINT32 |0...2%2-1 |Wrong TPU error code, should always be zero

ulFramesReceivedOk UINT32 |0...2%2-1 |Count of frames that have successfully been
received

ulFrameCheckSequenceErrors UINT32 |0...2%-1 |Count of frames that are an integral number of
octets in length and do not pass the FCS check

ulAlignmentErrors UINT32 |0..2%-1 |Count of frames that are not an integral number
of octets in length and do not pass the FCS
check

ulFrameToolLongErrors UINT32 0...2%2 -1 | Count of frames that are received and exceed
the maximum permitted frame size

ulRuntFramesReceived UINT32 |0..2%-1 |Count of frames that have a length between
42..63 bytes and a valid CRC

ulCollisionFragmentsReceived UINT32 |0..2%-1 |Count of frames that are smaller that 64 bytes
and have an invalid CRC

ulFramesDroppedDuelLowResource UINT32 |0..2%2-1 | No empty pointer available at indication time

ulFramesDroppedDueUrxOverflow UINT32 |0..2%-1 |URXFIFO overflow at indication time

ulRxFatalErrors UINT32 |0...2%2-1 |Wrong RPU error code, should always be zero

Table 136: Structure EDD_XMAC_COUNTERS_T

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 216/390

7.4.3

Process Alarm Service

With this service the application can request the stack to send a process alarm. Process alarms
have the high PROFINET priority in this implementation.

7.4.3.1

Note:
This service is obsolete from version V3.12.0.0. Please use Send Alarm Service instead.

Note:

If for some reason the 10-Controller does not react to the alarm the application will NOT
get a confirmation from the stack as the stack itself is waiting for a reaction of the 10-
Controller.

Note:

PROFINET only allows one outstanding alarm per priority per time. However the stack is
implemented in the way that the user can request sending up to 8 alarms simultaneously.
The stack will then queue the outstanding requests and handle them in the order they
were reported.

Note: Since GSDML file version V2.32 it is required to use the new keyword
“MaylssueProcessAlarm” to indicate that a submodule might generate a process alarm.
This keyword defaults to “false” for default Hilscher GSDML files. If this service is used,
the GSDML file must be adapted and the keyword must be set to “true” for all affected
submodules.

Process Alarm Request

This packet causes the stack to send a Process Alarm to the I0-Controller.

Packet Structure Reference
typedef struct PNS_IF_SEND_PROCESS_ALARM_REQ DATA_Ttag

TLR_UINT32 ulReserved;

TLR_UINT32 ulApi;

TLR_UINT32 ulSlot;

TLR_UINT32 ulSubslot;

TLR_UINT32 hAlarmHandle;

TLR_UINT16 usUserStructld;

TLR_UINT16 usAlarmDatalen;

TLR_UINTS8 abAlarmData[PNS_IF_MAX_ALARM_DATA_LEN];
} PNS_IF_SEND_PROCESS_ALARM_REQ DATA T;

typedef struct PNS_IF _SEND PROCESS ALARM_REQ Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_SEND_PROCESS_ALARM_REQ DATA_T tData;

3 PNS_IF_SEND_PROCESS_ALARM_REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

217/390

Packet Description

Structure PNS_IF_SEND_PROCESS_ALARM_REQ T

Type: Request

Area| Variable Type Value / Description
Range
Head structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 [0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 |24 +n Packet data length in bytes. n is the value of usLenAlarmData.
ulld UINT32 [0..2%-1 Packet identification as unique number generated by the
source process of the packet
ulSta UINT32 |0 Status not in use for request.
ulCmd UINT32 | Ox1F52 PNS_IF_SEND_PROCESS_ALARM_REQ-command
ulExt UINT32 |O Extension not in use, set to zero for compatibility reasons
ulRout UINT32 |x Routing, do not touch

Data

structure PNS_IF_SEND_PROCESS_ALARM_REQ |

DATA T

ulReserved UINT32 Reserved. Set to zero.

ulApi UINT32 The API the alarm belongs to.

ulSlot UINT32 The Slot the alarm belongs to.

ulSubslot UINT32 The Subslot the alarm belongs to.

hAlarmHandle UINT32 A user specific alarm handle. The application is free to choose
any value.

usUserStructlid UINT16 The User Structure Identifier.

usAlarmDatalen UINT16 |0..1024 The length of the alarm data

abAlarmData[1024] | UINTS[] The alarm data.

Table 137: PNS_1F_SEND_PROCESS_ALARM_REQ_T - Process Alarm Request

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 218/390

7.4.3.2 Process Alarm Confirmation

This packet is returned to the application by the stack after the controller confirmed the alarm. The
reaction of the IO-Controller is reported to the application within the confirmation.

Packet Structure Reference

typedef struct PNS_IF_SEND PROCESS ALARM_CNF_DATA Ttag
TLR_UINT32 ulReserved;
TLR_UINT32 hAlarmHandle;
/* PROFINET error code, consists of ErrCode, ErrDecode, ErrCodel and ErrCode2 */

TLR_UINT32 ulPnio;
} PNS_IF_SEND_PROCESS_ALARM_CNF_DATA T;

typedef struct PNS_IF _SEND PROCESS ALARM_CNF_Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_SEND_PROCESS_ALARM_CNF_DATA_T tData;

3 PNS_IF_SEND_PROCESS_ALARM_CNF_T;

Packet Description

Structure PNS_1F_SEND PROCESS_ALARM_CNF_T Type: Confirmation
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 12 Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 See below.

ulCmd UINT32 0x1F53 PNS_IF_SEND_PROCESS_ALARM_CNF-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_SEND_PROCESS_ALARM_CNF_DATA T

ulReserved UINT32 Reserved. Set to zero.

hAlarmHandle |UINT32 The user specific alarm handle.

ulPnio UINT32 PROFINET error code, consists of ErrCode, ErrDecode,
ErrCodel and ErrCode2. See section “PROFINET Status
Code”".

Table 138: PNS_1F_SEND_PROCESS_ALARM_CNF_T - Process Alarm Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 219/390

7.4.4 Diagnosis Alarm Service

With this service the application can request the stack to send a diagnosis alarm to the 10-
Controller. The application has to use an “add diagnosis” service first (see sections 6.4.12.3,
6.4.13, 6.4.14). The diagnosis handle the stack returned back to the application using those
services is needed here to send the alarm.

Diagnosis alarms have the low PROFINET priority in this implementation.

_) Note:

. If for some reason the 10-Controller does not react to the alarm the application will NOT
get a confirmation from the stack as the stack itself is waiting for a reaction of the 10-
Controller.

Note:

PROFINET only allows one outstanding alarm per AR per priority at the same time.
However the stack is implemented in the way that diagnostic alarms will be handled with
a state per alarm and therefore queue less. The application may issue one diagnostic
alarm per diagnosis entry at the same time.

7.4.4.1 Diagnosis Alarm Request

This request packet must be used by the application to force the stack to send a diagnosis alarm.

Packet Structure Reference

typedef struct PNS_IF_SEND_DIAG_ALARM_REQ DATA_Ttag
TLR_UINT32 ulReserved;
TLR_UINT32 hAlarmHandle;
TLR_UINT32 hDiagHandle;

} PNS_IF_SEND DIAG_ALARM_REQ DATA T;

typedef struct PNS_IF_SEND DIAG_ALARM_REQ Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_SEND_DIAG_ALARM_REQ DATA T tData;

} PNS_IF_SEND_DIAG_ALARM_REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

220/390

Packet Description

Structure PNS_IF_SEND_DIAG_ALARM_REQ T

Type: Request

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 12 Packet data length in bytes.

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for request.

ulCmd UINT32 O0x1F4C PNS_IF_SEND_DIAG_ALARM_REQ-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data

structure PNS_IF_SEND_DIAG_ALARM_REQ DATA T

ulReserved UINT32 Reserved. Set to zero.

hAlarmHandle |UINT32 A user specific alarm handle. The application is free to choose
any value.

hDiagHandle UINT32 The handle to the diagnosis record the diagnosis alarm shall be

sent for.

Table 139: PNS_IF_SEND_DIAG_ALARM_REQ_T - Diagnosis Alarm Request

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 221/390

7.4.4.2 Diagnosis Alarm Confirmation
This packet is returned to the application by the stack. The reaction of the 10-Controller is reported
to the application with this service.

If for some reason the 10-Controller does not respond to the Alarm the 10-Device application will
not receive this confirmation packet.

Packet Structure Reference

typedef struct PNS_IF _SEND DIAG_ALARM_CNF_DATA Ttag
TLR_UINT32 ulReserved;
TLR_UINT32 hAlarmHandle;
/* PROFINET error code, consists of ErrCode, ErrDecode, ErrCodel and ErrCode2 */

TLR_UINT32 ulPnio;
} PNS_IF_SEND_DIAG_ALARM_CNF_DATA T;

typedef struct PNS_IF_SEND DIAG_ALARM_CNF_Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_SEND_DIAG_ALARM_CNF_DATA T tData;

} PNS_IF_SEND_DIAG_ALARM_CNF_T;

Packet Description

Structure PNS_1F_DIAG_ALARM_CNF_T Type: Confirmation
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 12 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 See below.

ulCmd UINT32 0x1F4D PNS_IF_SEND_DIAG_ALARM_CNF

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_SEND_DIAG_ALARM_CNF_DATA_ T

ulReserved UINT32 Reserved. Set to zero.
hAlarmHandle |UINT32 The user specific alarm handle.
ulPnio UINT32 PROFINET error code, consists of ErrCode, ErrDecode,

ErrCodel and ErrCode?2. See section “PROFINET Status Code”.
Table 140: PNS_1F_DIAG_ALARM_CNF_T - Diagnosis Alarm Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 222/390
7.4.5 Return of Submodule Alarm Service

The application has to use this service whenever it changes a provider IOPS of a submodule from
BAD to GOOD. This service causes the stack to send a Return of Submodule alarm to the 10-
Controller which indicates that submodule provides valid data again.

Return of Submodule alarms use the low PROFINET priority in this implementation.

_) Note:

. If for some reason the 10-Controller does not react to the alarm the application will NOT
get a confirmation from the stack as the stack itself is waiting for a reaction of the 10-
Controller.

Note:

PROFINET only allows one outstanding alarm per priority per time. However the stack is
implemented in the way that the user can request sending up to 16 alarms alarm
simultaneously. The stack will then queue the outstanding requests and handle them in
the order they were reported.

7.45.1 Return of Submodule Alarm Request

This packet has to be sent to the stack to cause a Return of Submodule alarm.

Packet Structure Reference

typedef struct PNS_IF _RETURN_OF_SUB_ALARM_REQ DATA Ttag
{

TLR_UINT32 ulReserved;

TLR_UINT32 ulApi;

TLR_UINT32 ulSlot;

TLR_UINT32 ulSubslot;

TLR_UINT32 hAlarmHandle;
} PNS_IF_RETURN_OF SUB_ALARM_REQ DATA T;

typedef struct PNS_IF_RETURN_OF SUB_ALARM REQ Ttag
TLR_PACKET_HEADER_T tHead;

PNS_IF_RETURN_OF SUB_ALARM_REQ DATA T tData;
} PNS_IF_RETURN_OF SUB_ALARM_REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

223/390

Packet Description

Structure PNS_IF_RETURN_OF SUB_ALARM_ REQ T

Type: Request

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 20 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for request.

ulCmd UINT32 0x1F50 PNS_IF_RETURN_OF_SUB_REQ-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data

structure PNS_1F_RETURN_OF_.

SUB_ALARM_REQ DATA T

ulReserved UINT32 Reserved. Set to zero.

ulApi UINT32 The API of the submodule.
ulSlot UINT32 The Slot of the Submodule.
ulSubslot UINT32 The Subslot of the submodule.
hAlarmHandle |HANDLE A user specific alarm handle.

The application is free to choose any value.

Table 141: PNS_I1F_RETURN_OF_SUB_ALARM_REQ_T - Return of Submodule Alarm Request

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

224/390

7.45.2 Return of Submodule Alarm Confirmation

This packet will be returned by the stack.

Packet Structure Reference
typedef struct PNS_IF_RETURN OF SUB_ALARM_CNF_DATA Ttag

TLR_UINT32 ulReserved;
TLR_UINT32 hAlarmHandle;
/* PROFINET error code, consists of ErrCode, ErrDecode,
TLR_UINT32 ulPnio;
} PNS_IF_RETURN_OF SUB_ALARM_CNF_DATA T;

typedef struct PNS_IF RETURN_OF SUB ALARM_CNF_Ttag
TLR_PACKET_HEADER_T tHead;

PNS_IF_RETURN_OF_SUB_ALARM _CNF_DATA_T tData;
3 PNS_IF_RETURN_OF_SUB_ALARM_CNF_T;

Packet Description

ErrCodel and ErrCode2 */

Structure PNS_IF_RETURN_OF SUB_ALARM_CNF_T

Type: Confirmation

Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ullLen UINT32 12 Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 See below.

ulCmd UINT32 0x1F51 PNS_IF_RETURN_OF_SUB_CNF-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_I1F_RETURN_OF_SUB_ALARM_CNF_DATA_T

Code”"..

ulReserved UINT32 Reserved. Set to zero.
hAlarmHandle |UINT32 The user specific alarm handle.
ulPnio UINT32 PROFINET error code, consists of ErrCode, ErrDecode,

ErrCodel and ErrCode2. See section “PROFINET Status

Table 142: PNS_1F_RETURN_OF_ SUB_ALARM_CNF_T - Return of Submodule Alarm Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 225/390

7.4.6 AR Abort Request Service

With this service the application requests the stack to abort an established AR.

Note:
0 If the device handle refers to an SR-AR Set, all SR-ARSs of this set will be aborted.

7.4.6.1 AR Abort Request

The application has to send this packet to force the stack to abort an established connection.
Packet Structure Reference

typedef struct PNS_IF _HANDLE DATA Ttag

TLR_UINT32 hDeviceHandle;
} PNS_IF_HANDLE_DATA T;

typedef struct PNS_IF _HANDLE PACKET_ Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_HANDLE_DATA_T tData;

} PNS_IF_HANDLE_PACKET T;

typedef PNS_IF_HANDLE_PACKET T PNS_IF_ABORT_CONNECTION_REQ T;

Packet Description

Structure PNS_I1F_ABORT_CONNECTION_REQ T Type: Request
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 4 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for request.

ulCmd UINT32 0x1FD8 PNS_IF_ABORT_CONNECTION_REQ-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_I1F_HANDLE_DATA_T

hDeviceHandle | UINT32 The device handle of the AR to abort.

Table 143: PNS_IF_ABORT_CONNECTION_REQ_T - AR Abort Request

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

226/390

7.4.6.2

AR Abort Request Confirmation

The stack will send this packet back to the application.

Packet Structure Reference

typedef struct PNS_IF _HANDLE DATA Ttag

TLR_UINT32 hDeviceHandle;
} PNS_IF_HANDLE_DATA T;

typedef struct PNS_IF_HANDLE PACKET Ttag

/** packet header */
TLR_PACKET_HEADER_T
/** packet data */
PNS_IF_HANDLE DATA T

} PNS_IF_HANDLE PACKET T;

typedef PNS_IF_HANDLE_PACKET T

Packet Description

tHead;

tData;

PNS_IF_ABORT_CONNECTION_CNF_T;

Structure PNS_IF_ABORT_CONNECTION_CNF_T

Type: Confirmation

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrcld UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 4 Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet
ulSta UINT32 See below.
ulCmd UINT32 0x1FD9 PNS_IF_ABORT_CONNECTION_CNF-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | Structure PNS_IF_HANDLE_DATA_T
hDeviceHandle | UINT32 The device handle

Table 144: PNS_1F_ABORT_CONNECTION_CNF_T - AR Abort Request Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 227/390
7.4.7 Plug Module Service

With this service the application can plug additional modules after the Set_Configuration Req
packet (see section Set Configuration Service) was sent. It is also possible to (re)plug a module
which has been pulled by the application.

Plugging a module does not lead to any action visible from the outside (e.g. no alarm is generated
to an IO-Controller). Only plugging submodules is visible from the outside.

7.4.7.1 Plug Module Request

Receiving this packet forces the stack to send a Plug-alarm to the 10-Controller automatically if a
connection is established.

Packet Structure Reference
typedef struct PNS_IF PLUG_MODULE_REQ DATA Ttag

TLR_UINT32 ulReserved;

TLR_UINT32 ulApi;

TLR_UINT32 ulSlot;

TLR_UINT32 ulModuleld;

TLR_UINT16 usModuleState; /* module state: 0 = correct module, 1 = substitute module */
} PNS_IF_PLUG_MODULE_REQ DATA T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

228/390

Packet Description

Structure PNS_IF_PLUG_MODULE_REQ T

Type: Request

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 18 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for request.

ulCmd UINT32 0x1F04 PNS_IF_PLUG_MODULE_REQ-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data

structure PNS_IF_PLUG_MODULE_REQ DATA T

ulReserved UINT32 Reserved. Set to zero.

ulApi UINT32 The API of the module.

ulSlot UINT32 The Slot to plug the module to.
ulModuleld UINT32 The ModulelD of the module to be plugged.
usModState UINT16 0.1 Module state. Informative Only.

Table 145: PNS_I1F_PLUG

MODULE_REQ_T - Plug Module Request

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 229/390

7.4.7.2 Plug Module Confirmation

The stack will return this packet to application.

Packet Structure Reference

typedef struct PNS_IF_PLUG_MODULE_REQ DATA Ttag
{

TLR_UINT32 ulReserved;

TLR_UINT32 ulApi;

TLR_UINT32 ulSlot;

TLR_UINT32 ulModuleld;

TLR_UINT16 usModuleState; /* module state: 0 = correct module, 1 = substitute module */
} PNS_IF_PLUG_MODULE_REQ DATA T;

typedef PNS_IF_PLUG_MODULE_REQ T PNS_IF_PLUG_MODULE_CNF_T;

Packet Description

Structure PNS_1F_PLUG_MODULE_CNF_T Type: Confirmation
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 18 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 See below.

ulCmd UINT32 0x1FO05 PNS_IF_PLUG_MODULE_CNF-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_PLUG_MODULE_CNF_DATA T

ulReserved UINT32 Reserved. Set to zero.

ulApi UINT32 The API of the module.

ulSlot UINT32 The Slot to plug the module to.
ulModuleld UINT32 The ModulelD of the module to be plugged.
usModState UINT16 0..1 The Module state.

Table 146: PNS_1F_PLUG_MODULE_CNF_T - Plug Module Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

230/390

7.4.8 Plug Submodule Service

With this service the application can plug additional submodules after the stack has been
configured and/or while the device is communicating (see section Set Configuration Service of this
document) was sent. It is also possible to (re)plug a submodule which has been pulled by the

application.

If the plugged submodule was expected in a currently active AR, the controller will be notified
about this by means of a plug submodule alarm. The controller will now commission the
submodule by writing its parameters. The sequence of this is shown in the following figures:

Controller
I

Stack

Device

Application

4Extended]| Plug Submodule Req
Check if Submodule Requested
alt J/ [Submodule expected by ar AR]
alt / [Config not equal Expected Config]
Check Ind
e
Check Rsp
ot
Plug Alarm Re
> g q
loop) [For all Parameter$ of this Submodule]
Write. re
i L
Write Record Ind
e
Write Record Rsp
=
Write. cnf
o
Controller Stack Application

Figure 23: Plug Submodule Service packet sequence

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 231/390

Device
Contraller Stack Application
! ! !
: Ctrl.req (Param End : :
: q() -
Faram End Ind
e
alt / [fSetApplReady = 1]
Faram End Rsp
it}
Ctrl.cnf (Faram End)
ot
[fSetAppiReady = 0]
Faram End Rsp
et}
Ctrl.cnf (Faram End)
ot
Perforfn Internal Stuff
= E—
Set Appl Ready Re
< PP y heq
Set Appl Ready Re
PP ¥ heq -
Ctrl.req (Application Ready)
-t
Ctrl.cnf (Application Red dyL
Plug Alarm Cnf
e
(Extended) Plug Submodule an..

Contraller Stack Application

Figure 24: Plug Submodule Service packet sequence (continued)

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

232/390

7.4.8.1

Plug Submodule Request

Note:
. The stack also supports an extended plug submodule request allowing the user to

plug modules and submodules using one single request.

Packet Structure Reference

/* Request packet */
typedef struct PNS_IF_PLUG_SUBMODULE_REQ DATA_ Ttag

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT16
TLR_UINT16
TLR_UINT16
TLR_UINT16
TLR_UINT32
TLR_UINT16

ulReserved;

ulApi;

ulSlot;

ulSubslot;
ulSubmodld;
ulProvDatalen;
ulConsDatalen;
ulDPMOffsetCons;
ulDPMOffsetProv;
usOffsetlOPSProvider;
usOffsetlOPSConsumer ;
usOffsetlOCSProvider;
usOffsetlOCSConsumer ;
ulReserved;
usSubmodState;

3 PNS_IF_PLUG_SUBMODULE_REQ DATA T;

typedef struct PNS_IF _PLUG_SUBMODULE_REQ Ttag
{

TLR_PACKET_HEADER_T tHead;
PNS_IF_PLUG_SUBMODULE_REQ DATA T tData;
} PNS_IF_PLUG_SUBMODULE_REQ_T;
Packet Description
Structure PNS_IF_PLUG_SUBMODULE_REQ T Type: Request
Area| Variable Type Value / Description
Range
Head| structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32|0..2% -1 |Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ullLen UINT32 | 50 Packet data length in bytes
ulld UINT32 |0 .. 2% -1 | Packet identification as unique number generated by the
source process of the packet
ulSta UINT32 |0 Status not in use for request.
ulCmd UINT32 | 0x1F08 PNS_IF_PLUG_SUBMODULE_REQ-command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 | x Routing, do not touch
Data | structure PNS_I1F_PLUG_SUBMODULE_REQ_DATA_T
ulReserved UINT32 Reserved. Set to zero.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

233/390

Structure PNS_I1F_PLUG_SUBMODULE_REQ_T

Type: Request

Area| Variable Type Value / Description
Range

ulApi UINT32 The API of the submodule.

ulSlot UINT32 The Slot to plug the submodule to.

ulSubslot UINT32 The Subslot to plug the submodule to.

ulSubmodid UINT32 The SubmodulelD of the submodule to be plugged.

ulProvDatalen UINT32 The provider data length, i.e. the length of the Input data of
this submodule. This length describes the data sent by 10-
Device and received by IO-Controller.

ulConsDatalen UINT32 The consumer data length, i.e. the length of the Output data of
this submodule. This length describes the data sent by 10-
Controller and received by IO-Device.

ulDPMOffsetCons UINT32 Offset in DPM where consumer data for the submodule shall
be copied to.
If the length of data in this direction is 0 or if DPM is not used
this value shall be set to OXFFFFFFFF.

ulDPMOffsetProv UINT32 Offset in DPM where provider data for the submodule shall be
taken from.
If the length of data in this direction is O or if DPM is not used
this value shall be set to OXFFFFFFFF.

usOffsetlOPSProvider | UINT16 Offset where to put IO provider state for this submodule
relative to beginning of IOPS block in DPM output area to

usOffsetlOPSConsumer | UINT16 Offset where to take 10 provider state of this submodule
relative to beginning of IOPS block in the DPM input area from

usOffsetlOCSProvider | UINT16 Offset where to put IO consumer state for this submodule
relative to beginning of IOCS block in DPM output area to

usOffsetlOCSConsumer | UINT16 offset where to take IO consumer state of this submodule
relative to beginning of IOCS block in DPM input area from

ulReserved UINT32 |0 Reserved for future use. Set to zero.

usSubmodState UINT16 (0.1 The submodule state. See below.

Table 147: PNS_1F_PLUG_SUBMODULE_REQ_T - Plug Submodule Request

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

234/390

7.4.8.2

Plug Submodule Confirmation

Packet Structure Reference

/* Confirmation packet */
typedef struct PNS_IF_PLUG_SUBMODULE_REQ_DATA Ttag

{

}

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT16
TLR_UINT16
TLR_UINT16
TLR_UINT16
TLR_UINT32
TLR_UINT16

ulReserved;
ulApi;

ulSlot;
ulSubslot;
ulSubmodid;
ulProvDatalen;
ulConsDatalen;
ulDPMOffsetCons;
ulDPMOffsetProv;

usOffsetlOPSProvider;
usOffsetlOPSConsumer ;
usOffsetlOCSProvider;
usOffsetlOCSConsumer ;

ulReserved;
usSubmodState;

PNS_IF_PLUG_SUBMODULE_REQ DATA T;

typedef struct PNS_IF _PLUG_SUBMODULE_ REQ Ttag

TLR_PACKET _

HEADER_T

PNS_IF_PLUG_SUBMODULE_REQ DATA T
} PNS_IF_PLUG_SUBMODULE_REQ T;

typedef PNS_IF_PLUG_SUBMODULE_REQ T

Packet Description

tHead;
tData;

PNS_IF_PLUG_SUBMODULE_CNF_T;

Structure PNS_IF_PLUG_SUBMODULE_CNF_T

Type: Confirmation

Area| Variable Type Value / Description
Range
Head structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 |0...2%2-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.
ulLen UINT32 |50 Packet data length in bytes
ulld UINT32 |0...2%2-1 Packet identification as unique number generated by the
source process of the packet
ulSta UINT32 See below.
ulCmd UINT32 | Ox1F09 PNS_IF_PLUG_SUBMODULE_CNF-command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 |x Routing, do not touch

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

235/390

Structure PNS_I1F_PLUG_SUBMODULE_CNF_T

Type: Confirmation

Area| Variable Type Value / Description
Range
Data | structure PNS_I1F_PLUG_SUBMODULE_CNF_DATA_T

ulReserved UINT32 Reserved. Set to zero.

ulApi UINT32 The API of the module.

ulSlot UINT32 The Slot to plug the submodule to.

ulSubslot UINT32 The Subslot to plug the submodule to.

ulSubmodid UINT32 The SubmodulelD of the submodule to be plugged.

ulProvDatalen UINT32 The provider data length, i.e. the length of the Input data of
this submodule. This length describes the data sent by 10-
Device and received by 10-Controller.

ulConsDatalen UINT32 The consumer data length, i.e. the length of the Output data
of this submodule. This length describes the data sent by 10-
Controller and received by I0-Device.

ulDPMOffsetCons UINT32 Offset in DPM where consumer data for the submodule shall
be copied to.
If the length of data in this direction is 0 or if DPM is not used
this value shall be set to OXFFFFFFFF.

ulDPMOffsetProv UINT32 Offset in DPM where provider data for the submodule shall
be taken from.
If the length of data in this direction is 0 or if DPM is not used
this value shall be set to OXFFFFFFFF.

usOffsetlOPSProvider | UINT16 Offset where to put IO provider state for this submodule
relative to beginning of IOPS block in DPM output area to

usOffsetlOPSConsumer | UINT16 Offset where to take 10 provider state of this submodule
relative to beginning of IOPS block in the DPM input area
from

usOffsetlOCSProvider | UINT16 Offset where to put IO consumer state for this submodule
relative to beginning of IOCS block in DPM output area to

ulDPMOffsetlocsOut UINT32 Offset in DPM where IOCS is taken from.

ulReserved UINT32 |0 Reserved for future use. Set to zero.

usSubmodState UINT16 |0..1 The submodule state.

Table 148: PNS_1F_PLUG_SUBMODULE_CNF_T - Plug Submodule Confirmation

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

236/390

7.4.8.3 Extended Plug Submodule Request

Receiving this packet the stack adds the described submodule and module to its internal
configuration in order to use it for data exchange. The module will be added only if necessary. If
the submodule was requested by an lO-Controller for data exchange before, the stack will
automatically notify the controller by issuing a plug submodule alarm.

Packet Structure Reference

typedef struct PNS_IF_PLUG_SUBMODULE_EXTENDED_ REQ DATA Ttag

{
TLR_UINT32 ulReserved;

TLR_UINT32 ulApi;

TLR_UINT32 ulSlot;

TLR_UINT32 ulSubslot;

TLR_UINT32 ulSubmodid;
TLR_UINT32 ulProvDatalen;
TLR_UINT32 ulConsDatalen;
TLR_UINT32 ulDPMOffsetCons;
TLR_UINT32 ulDPMOffsetProv;
TLR_UINT16 usOffsetlOPSProvider;
TLR_UINT16 usOffsetlOPSConsumer;
TLR_UINT16 usOffsetlOCSProvider;
TLR_UINT16 usOffsetlOCSConsumer;
TLR_UINT32 ulReserved;
TLR_UINT16 usSubmodState;
TLR_UINT32 ulModuleld;
TLR_UINT16 usModuleState;

} PNS_IF_PLUG_SUBMODULE_EXTENDED_REQ DATA T;

typedef struct PNS_IF_PLUG_SUBMODULE_EXTENDED_REQ Ttag

TLR_PACKET_HEADER_T tHead;
PNS_1F_PLUG_SUBMODULE_EXTENDED_REQ_DATA_T tData;
} PNS_IF_PLUG_SUBMODULE_EXTENDED_REQ T;
Packet Description
Structure PNS_1F_PLUG_SUBMODULE_EXTENDED_REQ_T Type:
Structure Request
Area | Variable | Type | Value / Range | Description
Head| structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process
queue
ulSrc UINT32 Source Queue-Handle of application task process
queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero
for compatibility reasons.
ulSrclid UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.
ulLen UINT32 |56 Packet data length in bytes
ulld UINT32 |0..2%-1 Packet identification as unique number generated by
the source process of the packet
ulSta UINT32 |0 Status not in use for request.
ulCmd UINT32 | Ox1F08 PNS_IF_PLUG_SUBMODULE_REQ-command (It's
the same command as standard plug submodule
request)

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

237/390

Structure PNS_I1F_PLUG_SUBMODULE_EXTENDED_REQ_T

Type:

Structure Request

Area | Variable Type Value / Range | Description
ulExt UINT32 |0 Extension not in use, set to zero for compatibility
reasons
ulRout UINT32 |0 Routing, set to zero.
Data | structure PNS_1F_PLUG_SUBMODULE_EXTENDED_REQ_DATA_T

ulReserved UINT32 Reserved. Set to zero.

ulApi UINT32 The API of the submodule.

ulSlot UINT32 The Slot to plug the submodule to.

ulSubslot UINT32 The Subslot to plug the submodule to.

ulSubmodid UINT32 The SubmodulelD of the submodule to be plugged.

ulProvDatalen UINT32 The provider data length, i.e. the length of the Input
data of this submodule. This length describes the data
sent by 10-Device and received by IO-Controller.

ulConsDatalen UINT32 The consumer data length, i.e. the length of the
Output data of this submodule. This length describes
the data sent by 10-Controller and received by 10-
Device.

ulDPMOffsetCons UINT32 Offset in DPM where consumer data for the
submodule shall be copied to.
If the length of data in this direction is O or if DPM is
not used this value shall be set to OXFFFFFFFF.

ulDPMOffsetProv UINT32 Offset in DPM where provider data for the submodule
shall be taken from.
If the length of data in this direction is 0 or if DPM is
not used this value shall be set to OXFFFFFFFF.

usOffsetlOPSProvider | UINT16 Offset where to put IO provider state for this
submodule relative to beginning of IOPS block in the
DPM output area to

usOffsetlOPSConsumer | UINT16 Offset where to take 10 provider state of this
submodaule relative to beginning of IOPS block in the
DPM input area from

usOffsetlOCSProvider | UINT16 Offset where to put IO consumer state for this
submodule relative to beginning of IOCS block in
DPM output area to

usOffsetlOCSConsumer | UINT16 offset where to take 10 consumer state of this
submodaule relative to beginning of IOCS block in
DPM input area from

ulReserved UINT32 |0 Reserved for future use. Set to zero.

usSubmodState UINT16 |O0..1 The submodule state. See below

ulModuleld UINT32 | 1..0xFFFFFFFF | The module identifier.

usModuleState UINT16 |0..1 The module state. See section 6.4.7.1

Table 149: PNS_1F_PLUG_SUBMODULE_EXTENDED_REQ_T — Extended Plug Submodule Request

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

238/390

7.48.4

Extended Plug Submodule Confirmation

This is the confirmation of the extended plug submodule request.

Packet Structure Reference

typedef PNS_IF_PLUG_SUBMODULE_REQ T PNS_IF_PLUG_SUBMODULE_CNF_T;

Packet Description

Structure PNS_1F_PLUG_SUBMODULE_EXTENDED_CNF_T

Type: Confirmation

Area| Variable

‘ Type | Value / Range | Description

Head structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Ignore.

ulSrclid UINT32|0..2%-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ulLen UINT32 | 56 Packet data length in bytes

ulld UINT32|0..2%2-1 Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 Result of operation.

ulCmd UINT32 | 0x1F09 PNS_IF_PLUG_SUBMODULE_CNF-command (It's the
same command as standard plug submodule
confirmation)

ulExt UINT32 | X Extension. Ignore

ulRout UINT32 | X Routing, Ignore

Data | structure PNS_1F_PLUG_SUBMODULE_EXTENDED CNF_DATA T

ulReserved UINT32 Reserved. Set to zero.

ulApi UINT32 The API of the submodule.

ulSlot UINT32 The Slot the submodule was plugged into.

ulSubslot UINT32 The Subslot the submodule was plugged into

ulSubmodlId UINT32 The SubmodulelD of the submodule.

ulProvDatalen UINT32 The provider data length, i.e. the length of the Input data
of this submodule.

ulConsDatalen UINT32 The consumer data length, i.e. the length of the Output
data of this submodule

ulDPMOffsetCons UINT32 Offset in DPM where consumer data for the submodule
will be copied to.

ulDPMOffsetProv UINT32 Offset in DPM where provider data for the submodule will
be taken from.

usOffsetlOPSProvider | UINT16 Offset relative to beginning of IOPS block in the DPM
output area. where the 10 provider state for this
submodule will be put to.

usOffsetlOPSConsumer | UINT16 Offset relative to beginning of IOPS block in the DPM

input area where the 10 provider state of this submodule
will be taken from.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

239/390

Structure PNS_1F_PLUG_SUBMODULE_EXTENDED_CNF_T

Type: Confirmation

Area| Variable Type Value / Range | Description

usOffsetlOCSProvider | UINT16 Offset where to put IO consumer state for this submodule
relative to beginning of IOCS block in DPM output area to

usOffsetlOCSConsumer | UINT16 offset where to take 10 consumer state of this submodule
relative to beginning of IOCS block in DPM input area
from

ulReserved UINT32 |0 Reserved for future use. Ignore

usSubmodState UINT16 | 0..1 The submodule state

ulModuleld UINT32 | 1..0xFFFFFFFF | The module identifier.

usModuleState UINT16 | 0..1 The module state

Table 150: PNS_1F_PLUG_SUBMODULE_EXTENDED_CNF_T — Extended Plug Submodule Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 240/390
7.4.9 Pull Module Service

With this service the application can pull modules. This removes the module and its submodules
from the configuration. The stack will generate a Pull Module Alarm for each AR which owned any
submodule of this module. This sequence is illustrated in the following figure.

Device

Contraller] Controller2 Stack Application
I I I I

Full Module Reg
Lt

alt) [any Submodule is owned by Gontrgllert]

Pull Module Alarm Req
-

Pull Module Alarm Cnf

L

alt) [if any Submodule is gwned by Controllerg]

Full Module Alarm Reg
ot

Full Maodule Alarm Cnf
=

Repeat for remaining AR

‘ ‘ Full Madule Cnf.‘
[

Figure 25: Pull Module Service packet sequence

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

241/390

7.49.1 Pull Module Request

Receiving this packet forces the stack to automatically send a Pull-alarm to the IO-Controller if a
connection is established.

Packet Structure Reference

typedef struct PNS_IF PULL_MODULE_REQ DATA Ttag

TLR_UINT32 ulReserved;

TLR_UINT32 ulApi;

TLR_UINT32 ulSlot;
} PNS_IF_PULL_MODULE_REQ DATA T;

typedef struct PNS_IF PULL_MODULE_REQ Ttag

/** packet header

*/

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_PULL_MODULE_REQ DATA_T tData;
} PNS_IF_PULL_MODULE_REQ T;
Packet Description
Structure PNS_IF_PULL_MODULE_REQ_ T Type: Request
Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 12 Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet
ulSta UINT32 0 Status not in use for request.
ulCmd UINT32 0x1F06 PNS_IF_PULL_MODULE_REQ-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_IF_PULL_MODULE_REQ DATA_T
ulReserved UINT32 Reserved. Set to Zero.
ulApi UINT32 The API of the module.
ulSlot UINT32 The Slot to pull the module from.

Table 151: PNS_1F_PULL_MODULE_REQ_T - Pull Module Request

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 242/390

7.4.9.2 Pull Module Confirmation
The stack will return this packet to the application.

Packet Structure Reference

/* Confirmation packet */
typedef struct PNS_IF PULL_MODULE_REQ DATA Ttag

TLR_UINT32 ulReserved;
TLR_UINT32 ulApi;
TLR_UINT32 ulSlot;

} PNS_IF_PULL_MODULE_REQ DATA T;

typedef struct PNS_IF PULL_MODULE_REQ Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_PULL_MODULE_REQ_DATA_T tData;

} PNS_IF_PULL_MODULE_REQ T;:

typedef PNS_IF_PULL_MODULE_REQ T PNS_IF_PULL_MODULE_CNF_T;

Packet Description

Structure PNS_I1F_PULL_MODULE_CNF_T Type: Confirmation
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 12 Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 See below.

ulCmd UINT32 0x1FQ7 PNS_IF_PULL_MODULE_CNF-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_I1F_PULL_MODULE_CNF_DATA_T

ulReserved UINT32 Reserved. Will be set to Zero.
ulApi UINT32 The API of the module.
ulSlot UINT32 The Slot to pull the module from.

Table 152: PNS_1F_PULL_MODULE_CNF_T — Pull Module Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

243/390

7.4.10 Pull Submodule Service

With this service the application can pull submodules. This will remove the submodule from the
stacks configuration. If the submodule is in use by any AR a Pull Alarm will be generated

automatically. The sequence is shown in the following figure.

Device

Contraller Stack Application

Full Submodule Req
ot

Check if Submodule is in Use

alt / [Submodule in Use by an AR]

1F'u|| Submodule Alarm Heq

Pull Submaodule Alarm Cnf

Pull Submodule Cnf

Figure 26: Pull Submodule Service packet sequence

7.4.10.1 Pull Submodule Request

Packet Structure Reference

/* Request packet */
typedef struct PNS_IF_PULL_SUBMODULE_REQ DATA_ Ttag

TLR_UINT32 ulReserved;
TLR_UINT32 ulApi;
TLR_UINT32 ulSlot;
TLR_UINT32 ulSubslot;
} PNS_IF_PULL_SUBMODULE_REQ DATA T;

typedef struct PNS_IF PULL_SUBMODULE REQ Ttag

/** packet header */

TLR_PACKET_HEADER_T tHead;
/** packet data */
PNS_IF_PULL_SUBMODULE_REQ_DATA_T tData;

} PNS_IF_PULL_SUBMODULE REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 244/390

Packet Description

Structure PNS_1F_PULL_SUBMODULE_REQ_T Type: Request
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ulLen UINT32 16 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 0 Status not in use for request.

ulCmd UINT32 O0x1FOA PNS_IF_PULL_SUBMODULE_REQ-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_PULL_SUBMODULE_REQ DATA T

ulReserved UINT32 Reserved. Set to zero.

ulApi UINT32 The API of the submodule.

ulSlot UINT32 The Slot to pull the submodule from.
ulSubslot UINT32 The subslot to pull the submodule from.

Table 153: PNS_IF_PULL_SUBMODULE_REQ_T - Pull Submodule Request

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

245/390

7.4.10.2 Pull Submodule Confirmation

The stack will return this packet to the application.

Packet Structure Reference

/* Confirmation packet */

typedef struct PNS_IF_PULL_SUBMODULE_REQ DATA Ttag

TLR_UINT32 ulReserved;
TLR_UINT32 ulApi;
TLR_UINT32 ulSlot;
TLR_UINT32 ulSubslot;

} PNS_IF_PULL_SUBMODULE_REQ DATA T;

typedef struct PNS_IF PULL_SUBMODULE REQ Ttag

/** packet header */
TLR_PACKET_HEADER_T
/** packet data */

PNS_IF_PULL_SUBMODULE_REQ DATA T
} PNS_IF_PULL_SUBMODULE_REQ T;
typedef PNS_IF_PULL_SUBMODULE_REQ T

Packet Description

tHead;
tData;

PNS_IF_PULL_SUBMODULE_CNF

Structure PNS_IF_PULL_SUBMODULE_CNF_T

Type: Confirmation

Area | Variable Type

Value /
Range

Description

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 16 Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 See below.

ulCmd UINT32 0x1F0B PNS_IF_PULL_SUBMODULE_CNF-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_PULL_SUBMODULE_CNF_DATA_ T

ulReserved UINT32 Reserved. Will be set to Zero.

ulApi UINT32 The API of the submodule.

ulSlot UINT32 The Slot to pull the submodule from.
ulSubslot UINT32 The subslot to pull the submodule from.

Table 154: PNS_1F_PULL_SUBMODULE_CNF_T - Pull Submodule Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

246/390

7.4.11 Get Station Name Service

With this service the application can request the current NameOfStation from the stack.

Note:

In this service the confirmation packet is larger than the request packet. If the application
is running on the netX and DPM is not used the application has to provide a buffer which

7.4.11.1

is big enoug

h.

Get Station Name Request

The application has to send the following request packet to the stack.

Packet Structure Reference

/* Request packet */

typedef TLR_EMPTY_ PACKET T

Packet Description

PNS_IF_GET_STATION_NAME_REQ T;

Structure PNS_IF_GET_STATION_NAME_REQ T

Type: Request

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrcld UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 0 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for requests.

ulCmd UINT32 Ox1F8E PNS_IF_GET_STATION_NAME_REQ-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 155: PNS_I1F_GET_STATION_NAME_REQ_T - Get Station Name Request

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 247/390

7.4.11.2 Get Station Name Confirmation
The following confirmation packet containing the current NameOfStation will be returned:

Packet Structure Reference

/* Confirmation packet */
typedef struct PNS_IF_GET_STATION_NAME_CNF_DATA Ttag

TLR_UINT16 usNamelLen;
TLR_UINT8 abNameOfStation[PNI10_MAX_NAME_OF STATION];
} PNS_IF_GET_STATION_NAME_CNF_DATA T;

typedef struct PNS_IF_GET_STATION NAME_CNF_Ttag
TLR_PACKET HEADER T tHead;

PNS_IF_GET_STATION_NAME_CNF_DATA T tData;
} PNS_IF_GET_STATION_NAME_CNF _T;

Packet Description

Structure PNS_1F_GET_STATION_NAME_CNF_T Type: Confirmation
Area| Variable Type Value / Description
Range

Head| structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32|0...2%2-1 | Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 | 242 Packet data length in bytes

ulld UINT32|0...2%2-1 | Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 |0 Status has to be okay for this service.

ulCmd UINT32 | OX1F8F PNS_IF_GET_STATION_NAME_CNF-Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 | x Routing, do not touch

Data | Structure PNS_IF_GET_STATION_NAME_CNF_DATA_T

usNameLen UINT16 | 0..240 Length of the current NameOfStation.

abNameOfStation[240] | UINTS The NameOfStation as ASCII byte-array.
For the station name, only small characters are allowed

Table 156: PNS_1F_GET_STATION_NAME_CNF_T - Get Station Name Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 248/390

7.4.12 Get IP Address Service

With this service the application can request the current IP-parameters (IP address, network mask,
gateway address) from the stack.

_) Note:

. In this service the confirmation packet is larger than the request packet. If the application
is running on the netX and DPM is not used the application has to provide a buffer which
is big enough.

7.4.12.1 Get IP Address Request

The application has to send the following request packet to the stack.
Packet Structure Reference

/* Request packet */

typedef TLR_EMPTY_PACKET_T PNS_IF_GET_IP_ADDR_REQ_T;

Packet Description

Structure PNS_IF_GET_IP_ADDR_REQ T Type: Request
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestlid UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 0 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for requests.

ulCmd UINT32 0x1FBC PNS_IF_GET_IP_ADDR_REQ-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 157: PNS_I1F_GET_I1P_ADDR_REQ_T - Get IP Address Request

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

249/390

7.4.12.2 Get IP Address Confirmation

The following confirmation packet containing the IP parameters will be returned:

Packet Structure Reference

/* Confirmation packet */
typedef struct PNS_IF GET IP_ADDR_CNF_DATA Ttag

TLR_UINT32 ul IpAddr;
TLR_UINT32 ulNetMask;
TLR_UINT32 ulGateway;

} PNS_IF_GET_IP_ADDR_CNF_DATA T;

typedef struct PNS_IF _GET_IP_ADDR_CNF_Ttag
TLR_PACKET_HEADER_T tHead;

PNS_IF_GET_IP_ADDR_CNF_DATA T tData;
3 PNS_IF_GET_IP_ADDR_CNF_T;

Packet Description

Structure PNS_IF_GET _IP_ADDR_CNF_T Type: Confirmation
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestlid UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 12 Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 0 Status has to be okay for this service.

ulCmd UINT32 0x1FBD PNS_IF_GET_IP_ADDR_CNF -command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_I1F_GET_1P_ADDR_CNF_DATA_T

ul IpAddr UINT32 The IP address.
ulNetMask UINT32 The network mask.
ulGateway UINT32 The gateway address.

Table 158: PNS_I1F_GET_I1P_ADDR_CNF_T - Get IP Address Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 250/390

7.4.13 Add Channel Diagnosis Service

With this service the user application can add a diagnosis data record to a submodule.

Inside the confirmation packet the stack sends a unique record handle to the application. This
handle has to be stored by the application as it is needed to remove the diagnosis record later on.
It is also needed if the application wants to send the diagnosis alarm some time later than the
record is added.

Note:
. The stack does not automatically send a diagnosis alarm to the 10-Controller. This has to
be initiated by the application using the Diagnosis Alarm Service (see section 6.4.4).

7.4.13.1 Add Channel Diagnosis Request

Using this packet the user application can add diagnosis data to a submodule.

Packet Structure Reference

/* Request packet */
typedef struct PNS_IF_ADD_CHANNEL_DIAG Ttag
{
TLR_UINT32 ulApi;
TLR_UINT32 ulSlot;
TLR_UINT32 ulSubslot;
TLR_UINT32 hDiagHandle;
TLR_UINT16 usChannelNum;
TLR_UINT16 usChannelProp;
TLR_UINT16 usChannelErrType;
} PNS_IF_ADD_CHANNEL_DIAG_T;

typedef struct PNS_IF _ADD_CHANNEL_DIAG_REQ Ttag
TLR_PACKET HEADER_T tHead;

PNS_IF_ADD_CHANNEL_DIAG_T tData;
} PNS_IF_ADD_CHANNEL_DIAG_REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

251/390

Packet Description

Structure PNS_IF_ADD_CHANNEL_DIAG_REQ T

Type: Request

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_ T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 [0...2%2-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.
ullLen UINT32 |22 PNS_IF_ADD_CHANNEL_DIAG_REQ_T - Packet data length
in bytes
ulld UINT32 [0..2%2-1 Packet identification as unique number generated by the
source process of the packet
ulSta UINT32 |0 Status not in use for requests. Set to zero.
ulCmd UINT32 | Ox1F46 PNS_IF_ADD_CHANNEL_DIAG_REQ - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 |x Routing, do not touch
Data | structure PNS_I1F_ADD_CHANNEL_DIAG_ T

ulApi UINT32 The API of the submodule.

ulSlot UINT32 The Slot of the submodule.

ulSubslot UINT32 The Subslot of the submodule.

hDiagHandle UINT32 | O Not used inside this request. Will be used for confirmation
by the stack. Set to zero.

usChannelNum UINT16 Channel Number for which the diagnosis data shall be
added. Supported are Manufacturer specific Channel
Numbers in the range of 0x0000-0x7FFF and the Channel
number for the submodule itself 0x8000

usChannelProp UINT16 Channel properties. See Table 227

usChannelErrType | UINT16 Channel error type. See Table 231

Table 159: PNS_1F_ADD_CHANNEL_DIAG_REQ_T - Add Channel Diagnosis Request

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

252/390

7.4.13.2

Add Channel Diagnosis Confirmation

With this packet the stack informs the application about the success of adding diagnosis data.

Packet Structure Reference

/* Confirmation packet */
typedef struct PNS_IF_ADD_CHANNEL_DIAG Ttag

{
TLR_UINT32

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT16
TLR_UINT16
TLR_UINT16

ulApi;

ulSlot;
ulSubslot;
hDiagHandle;
usChanne INum;
usChannelProp;
usChannelErrType;

3 PNS_IF_ADD_CHANNEL_DIAG_T;

typedef struct PNS_IF _ADD_CHANNEL_DIAG_REQ Ttag

TLR_PACKET_HEADER_T tHead;
PNS_IF_ADD_CHANNEL_DIAG_T tData;
} PNS_IF_ADD_CHANNEL_DIAG_REQ T;

typedef PNS_IF_ADD_CHANNEL_DIAG_REQ T

PNS_IF_ADD_CHANNEL_DIAG_CNF_T;

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

253/390

Packet Description

Structure PNS_IF_ADD_CHANNEL_DIAG_CNF_T

Type: Confirmation

Area |Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 (O Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 |0...2%2-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.
ulLen UINT32 |22 Packet data length in bytes
ulld UINT32 |0...2%2-1 Packet identification, untouched
ulSta UINT32 See below.
ulCmd UINT32 |Ox1F47 PNS_IF_ADD_CHANNEL_DIAG_CNF - Command
ulExt UINT32 (O Extension, untouched
ulRout UINT32 |x Routing, do not touch
Data |structure PNS_IF_ADD_CHANNEL_DIAG_ T

ulApi UINT32 The API of the submodule.

ulSlot UINT32 The Slot of the submodule.

ulSubslot UINT32 The Subslot of the submodule.

hDiagHandle UINT32 A unique handle representing this diagnostic record inside
the stack. The application shall store it as it is has to be
used to be able to remove the record later on.

usChannelNum UINT16 Channel Number for which the diagnosis data shall be
added. Supported are Manufacturer specific Channel
Numbers in the range of 0x0000-0x7FFF and the Channel
number for the submodule itself 0x8000

usChannelProp UINT16 Channel properties. See Table 227

usChannelErrType | UINT16 Channel error type. See Table 231

Table 160: PNS_1F_ADD_CHANNEL_DIAG_CNF_T - Add Channel Diagnosis Confirmation

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 254/390
7.4.14 Add Extended Channel Diagnosis Service

With this service the user application can add an extended diagnosis data record to a submodule.

Inside the confirmation packet the stack sends a unique record handle to the application. This
handle has to be stored by the application as it is needed to remove the diagnosis record later on.
It is also needed if the application wants to send the diagnosis alarm some time later than the
record is added.

Note:
. The stack does not automatically send a diagnosis alarm to the 10-Controller. This has to
be initiated by the application using the Diagnosis Alarm Service (see section 6.4.4).

7.4.14.1 Add Extended Channel Diagnosis Request

The user application can add extended diagnosis data to a submodule using this packet.

Packet Structure Reference

/* Request packet */
typedef struct PNS_IF _ADD_EXTENDED DIAG_ Ttag
{
TLR_UINT32 ulApi;
TLR_UINT32 ulSlot;
TLR_UINT32 ulSubslot;
TLR_UINT32 hDiagHandle;
TLR_UINT16 usChannelNum;
TLR_UINT16 usChannelProp;
TLR_UINT16 usChannelErrType;
TLR_UINT16 usReserved;
TLR_UINT32 ulExtChannelAddValue;
TLR_UINT16 usExtChannelErrType;
} PNS_IF_ADD_EXTENDED DIAG_T;

typedef struct PNS_IF _ADD_EXTENDED DIAG_REQ Ttag
TLR_PACKET_HEADER_T tHead;

PNS_IF_ADD_EXTENDED_DIAG_T thata;
} PNS_IF_ADD_EXTENDED_DIAG_REQ T;:

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

255/390

Packet Description

Structure PNS_IF_ADD_EXTENDED_DIAG_REQ T

Type: Request

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process
queue
ulSrc UINT32 Source Queue-Handle of application task process
queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero
for compatibility reasons.
ulSrclid UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.
ullLen UINT32 |30 PNS_I1F_ADD_EXT_DIAG_REQ_T - Packet data length
in bytes
ulld UINT32 |0...2%2-1 Packet identification as unique number generated by the
source process of the packet
ulSta UINT32 |0 Status not in use for requests. Set to zero.
ulCmd UINT32 | Ox1F54 PNS_IF_ADD_EXTENDED_DIAG_REQ - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility
reasons
ulRout UINT32 | x Routing, do not touch
Data | structure PNS_IF_ADD_EXTENDED DIAG_ T
ulApi UINT32 The API of the submodule.
ulSlot UINT32 The Slot of the submodule.
ulSubslot UINT32 The Subslot of the submodule.
hDiagHandle UINT32 | O Not used inside this request. Will be used for
confirmation by the stack. Set to zero.
usChannelNum UINT16 Channel Number for which the diagnosis data shall be
added. Supported are Manufacturer specific Channel
Numbers in the range of 0x0000-0x7FFF and the
Channel number for the submodule itself 0x8000
usChannelProp UINT16 Channel properties. See Table 227
usChannelErrType UINT16 Channel error type. See Table 231
usReserved UINT16 Reserved
ulExtChannelAddValue | UINT32 Additional Value. Can be used to transfer additional
information regarding the diagnosis. (E.g. Temperature)
Can be displayed by engineering software using format
strings defined in GSDML.
usExtChannelErrType |UINT16 |1 ... 0x7FFF | Extended channel error type. Table 232

Table 161: PNS_1F_ADD_EXTENDED_DIAG_REQ_T - Add Extended Channel Diagnosis Request

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

256/390

7.4.14.2 Add Extended Channel Diagnosis Confirmation

With this packet the stack informs the application about the success of adding extended diagnosis

data.

Packet Structure Reference

/* Confirmation packet */
typedef struct PNS_IF _ADD_EXTENDED DIAG Ttag

TLR_UINT32 ulApi;
TLR_UINT32 ulSlot;
TLR_UINT32 ulSubslot;
TLR_UINT32 hDiagHandle;
TLR_UINT16 usChannelNum;
TLR_UINT16 usChannelProp;
TLR_UINT16 usChannelErrType;
TLR_UINT16 usReserved;
TLR_UINT32 ulExtChannelAddValue;
TLR_UINT16 usExtChannelErrType;
} PNS_IF_ADD_EXTENDED DIAG_T;

typedef struct PNS_IF _ADD_EXTENDED DIAG_REQ Ttag
TLR_PACKET_HEADER_T tHead;

PNS_IF_ADD_EXTENDED_DIAG_T thata;
} PNS_IF_ADD_EXTENDED_DIAG_REQ T;:

typedef PNS_IF_ADD_EXTENDED DIAG_REQ T PNS_IF_ADD_EXTENDED_DIAG_CNF_T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 257/390

Packet Description

Structure PNS_IF_ADD_EXTENDED_DIAG_CNF_T Type: Confirmation
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process
queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero
for compatibility reasons.

ulSrclid UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.

ulLen UINT32 | 30 Packet data length in bytes

ulld UINT32 |0...2%2-1 Packet identification, untouched

ulSta UINT32 See below.

ulCmd UINT32 | Ox1F55 PNS_I1F_ADD_EXTENDED_DIAG_CNF - Command

ulExt UINT32 |0 Extension, untouched

ulRout UINT32 | x Routing, do not touch

Data | structure PNS_IF_ADD_EXTENDED_DIAG_T

ulApi UINT32 The API of the submodule.

ulSlot UINT32 The Slot of the submodule.

ulSubslot UINT32 The Subslot of the submodule.

hDiagHandle UINT32 A unique handle representing this diagnostic record

inside the stack. Application shall store it as it is has to
be used to be able to remove the record later on.

usChannelNum UINT16 Channel Number for which the diagnosis data shall be
added. Supported are Manufacturer specific Channel
Numbers in the range of 0x0000-0x7FFF and the
Channel number for the submodule itself 0x8000.

usChannelProp UINT16 Channel properties. See Table 227
usChannelErrType UINT16 Channel error type. See Table 231
usReserved UINT16 Reserved

ulExtChannelAddValue | UINT32 |0 Currently not supported, set to zero.
usExtChannelErrType |UINT16 Extended channel error type. Table 232

Table 162: PNS_1F_ADD_EXTENDED_DIAG_CNF_T - Add Extended Channel Diagnosis Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 258/390

7.4.15 Add Generic Diagnosis Service

With this service the user application can add a generic diagnosis data record to a submodule.

Inside the confirmation packet the stack sends a unique record handle to the application. This
handle has to be stored by the application as it is needed to remove the diagnosis record later on.
It is also needed if the application wants to send the diagnosis alarm some time later than the
record is added.

_) Note:

. The stack does not automatically send a diagnosis alarm to the PROFINET I10-
Controller. This has to be initiated by the application using the Diagnosis Alarm Service
(see section 6.4.4).

_) Note:

. Usage of this service is hot recommended. Generic diagnosis can not be handled
automatically by Engineering systems. The Pl Diagnosis Guideline recommends not to
use this service.

7.4.15.1 Add Generic Channel Diagnosis Request

Using this packet the user application can add generic diagnosis data to a submodule.

Packet Structure Reference

/* Request packet */
typedef struct PNS_IF_ADD_GENERIC_DIAG_REQ DATA_Ttag
{

TLR_UINT32 ulApi;

TLR_UINT32 ulSlot;

TLR_UINT32 ulSubslot;

TLR_UINT32 hDiagHandle;

TLR_UINT16 usChannelNum;

TLR_UINT16 usChannelProp;

TLR_UINT16 usUserStructld;

TLR_UINT16 usReserved;

TLR_UINT16 usDiagDatalen;

TLR_UINT8 abDiagData[PNS_IF _MAX_ALARM_DATA LEN];
} PNS_IF_ADD_GENERIC_DIAG_REQ DATA T;

typedef struct
TLR_PACKET_HEADER_T tHead;

PNS_IF_ADD_GENERIC_DIAG_REQ DATA T tData;
3 PNS_IF_ADD_GENERIC_DIAG_REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

259/390

Packet Description

Structure PNS_IF_ADD_GENERIC_DIAG_REQ T

Type: Request

Area | Variable ‘ Type ‘ Value / Range | Description
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 |0...2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 |26 +n PNS_1F_ADD_GENERIC_DIAG_REQ - Packet data length in
bytes + usDiagDatalLen
ulld UINT32 |0...2%2-1 Packet identification as uniqgue number generated by the
source process of the packet
ulSta UINT32 |0 Status not used for requests. Set to zero.
ulCmd UINT32 | Ox1F58 PNS_IF_ADD_GENERIC_DIAG_REQ - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 |x Routing, do not touch
Data |structure PNS_IF_ADD_GENERIC_DIAG_REQ DATA T

ulApi UINT32 The API of the submodule.

ulSlot UINT32 The Slot of the submodule.

ulSubslot UINT32 The Subslot of the submodule.

hDiagHandle UINT32 | O Not used inside this request. Will be used for confirmation by
the stack. Set to zero.

usChannelNum UINT16 | 0x8000 Channel Number for which the diagnosis data shall be added
.Supported are Manufacturer specific Channel Numbers in the
range of 0x0000-0x7FFF and the Channel number for the
submodule itself 0x8000.

usChannelProp |UINT16 See Table 148: Coding of the field usChannelProp

usUserStructld | UINT16 |0 - OX7FFF See Table 157: Coding of the field usUserStructld

usReserved UINT16 Reserved

usDiagDatalen |UINT16 |1..1024 Length of Diagnosis Data in bytes

abDiagData UINT8 Diagnosis Data

[1024]

Table 163: PNS_I1F_ADD_GENERIC_DIAG_REQ_T - Add Generic Channel Diagnosis Request

Coding of the field usUserStructid

Value (Hexadecimal)

Description

0 — OX7FFF

Manufacturer Specific.

Table 164: Coding of the field usUserStructld

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

260/390

7.4.15.2

Add Generic Channel Diagnosis Confirmation

With this packet the stack informs the application about the success of adding generic diagnosis

data.

Packet Structure Reference

/* Confirmation packet */

typedef struct PNS_IF_ADD_GENERIC_DIAG_CNF_DATA Ttag

TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT32
TLR_UINT16
TLR_UINT16
TLR_UINT16

3 PNS_IF_ADD_GENERIC_DIAG_CNF_DATA T;

typedef struct

ulApi;

ulSlot;
ulSubslot;
hDiagHandle;
usChanne INum;
usChannelProp;
usUserStructld;

TLR_PACKET_HEADER_T
PNS_IF_ADD_GENERIC_DIAG_CNF_DATA_T tData;
} PNS_IF_ADD_GENERIC_DIAG_CNF_T;

tHead;

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

261/390

Packet Description

Structure PNS_IF_ADD_GENERIC_DIAG_CNF_T

Type: Confirmation

Area | Variable | Type | Value / Range | Description
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 |22 Packet data length in bytes
ulld UINT32 |0..2%2-1 Packet identification, untouched
ulSta UINT32 See below.
ulCmd UINT32 | Ox1F59 PNS_IF_ADD_GENERIC_DIAG_CNF - Command
ulExt UINT32 |0 Extension, untouched
ulRout UINT32 |x Routing, do not touch
Data | structure PNS_IF_ADD_GENERIC_DIAG_CNF_DATA T

ulApi UINT32 The API of the submodule.

ulSlot UINT32 The Slot of the submodule.

ulSubslot UINT32 The Subslot of the submodule.

hDiagHandle UINT32 A unique handle representing this diagnostic record inside the
stack. Application shall store it as it is has to be used to be
able to remove the record later on.

usChannelNum UINT16 | 0x8000 Channel Number for which the diagnosis data shall be added.
Supported are Manufacturer specific Channel Numbers in the
range of 0x0000-0x7FFF and the Channel number for the
submodule itself 0x8000.

usChannelProp |UINT16 See Table 148: Coding of the field usChannelProp

usUserStructld | UINT16 See Table 157: Coding of the field usUserStructld

Table 165: PNS_1F_ADD_GENERIC_DIAG_CNF_T - Add Generic Channel Diagnosis Confirmation

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 262/390
7.4.16 Remove Diagnosis Service

With this service the user application can remove previously added diagnosis data from a
submodule. This will be reported to the IO-Controller with a “diagnosis disappears” alarm
automatically if necessary.

7.4.16.1 Remove Diagnosis Request
Using this packet the user application can remove diagnosis data from a submodule.

Packet Structure Reference

/* Request packet */
typedef struct PNS_IF _REMOVE DIAG_REQ DATA Ttag

TLR_UINT32 hDiagHandle;
} PNS_IF_REMOVE_DIAG_REQ DATA T;

typedef struct PNS_IF _REMOVE _DIAG_REQ Ttag
TLR_PACKET HEADER_T tHead;

PNS_IF_REMOVE_DIAG_REQ DATA T tData;
} PNS_IF_REMOVE_DIAG_REQ T;

Packet Description

Structure PNS_I1F_REMOVE_DIAG_REQ_ T Type: Request

Area | Variable ‘Type ‘Value/Range Description

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrcid UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 |4 PNS_IF_REMOVE_DIAG_REQ_T - Packet data length in bytes

ulld UINT32 |0..2%2-1 Packet identification as unique number generated by the source
process of the packet

ulSta UINT32 |0 Status not used for requests. Set to zero.

ulCmd UINT32 | OXx1FE6 PNS_IF_REMOVE_DIAG_REQ - Command

ulExt UINT32 |0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 |x Routing, do not touch

Data | structure PNS_IF_REMOVE_DIAG_T

hDiagHandle | UINT32 The unique diagnosis handle given to application by the stack
while adding the diagnosis record.

Table 166: PNS_1F_REMOVE_DIAG_REQ_T - Remove Diagnosis Request

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

263/390

7.4.16.2 Remove Diagnosis Confirmation

With this packet the stack informs the application about the success of removing diagnosis data.

Packet Structure Reference

/* Confirmation packet */
typedef PNS_IF_REMOVE DIAG_REQ T

Packet Description

PNS_IF_REMOVE_DIAG_CNF_T;:

Structure PNS_IF_REMOVE_DIAG_CNF_T

Type: Confirmation

Area | Variable ‘ Type | Value / Range | Description
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 |0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 |4 Packet data length in bytes
ulld UINT32 |0..2%2-1 Packet identification, untouched
ulSta UINT32 See below.
ulCmd UINT32 | Ox1FE7 PNS_ IF_REMOVE_DIAG_CNF - Command
ulExt UINT32 |0 Extension, untouched
ulRout UINT32 |[x Routing, do not touch
Data structure PNS_1F_REMOVE_DIAG_T
hDiagHandle | HANDLE The unique diagnosis handle given to application by the stack
while adding the diagnosis record.

Table 167: PNS_1F_REMOVE_DIAG_CNF_T - Remove Diagnosis Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 264/390
7.4.17 Get Submodule Configuration Service

With this service the user application can get the information about all previously configured
submodules.

Packet Structure Reference

#define MAX_SUBMODULE_CNT 95 /* max. count of submodules */

/* request packet */
typedef TLR_EMPTY_PACKET_T PNS_IF_GET_CONFIGURED_SUBM REQ T;

/* confirmation packet */
typedef struct

TLR_UINT32 ulApi;
TLR_UINT16 usSlot;
TLR_UINT16 usSubslot;
TLR_UINT32 ulModuleld;
TLR_UINT32 ulSubmoduleld;

} IF_CONFIGURED_SUBM_STRUCT_Tj;

typedef struct

TLR_UINT32 ulSubmCnt;
PNS_I1F_CONFIGURED_SUBM_STRUCT_T atSubm[MAX_SUBMODULE_CNT];
} IF_GET_CONFIGURED_SUBM_CNF_DATA T;

typedef struct
TLR_PACKET_HEADER_T tHead;

PNS_IF_GET_CONFIGURED_SUBM_CNF_DATA_T tData;
3 IF_GET_CONFIGURED_SUBM_CNF_T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

265/390

Packet Description

Structure PNS_I1F_GET_CONFIGURED_SUBM_CNF_T

Type: Confirmation

Area | Variable ‘ Type | Value / Range Description
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of
PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of
application task process queue
ulDestld UINT32 |0 Destination End Point Identifier.
Not in use, set to zero for
compatibility reasons.
ulSrcid UINT32 |0..2%-1 Source End Point Identifier,
specifying the origin of the
packet inside the Source
Process.
ulLen UINT32 |24 Packet data length in bytes
ulld UINT32 |0..2%-1 Packet identification, untouched
ulSta UINT32 See below.
ulCmd UINT32 | Ox1FB3 PNS_IF_GET_CONFIGURED_S
UBM_CNF - Command
ulExt UINT32 |0 Extension, untouched
ulRout UINT32 |x Routing, do not touch
Data | structure PNS_I1F_GET_CONFIGURED_SUBM_CNF_T
ulSubmCnt UINT32 |O... Count of configured slaves
MAX_SUBMODULE_CNT
PNS_IF_CONFIGURED_SUBM_STRUCT_ | Structure Array of
T atSubm[MAX_SUBMODULE_CNT] PNS_IF_CONFIGURED_SUBM_
STRUCT_T

Table 168: PNS_IF_GET_CONFIGURED_SUBM_CNF_T - Get Submodule Configuration

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

266/390

The structure PNS__1F_CONFIGURED_SUBM_STRUCT_T has following members:

Variable Type Range

ulApi UINT32 0..2%2.1
usSlot UINT16 0..216-1
usSubslot UINT16 0..216-1
ulModuleld UINT32 0..2%2-1
ulSubmoduleld UINT32 0..2%2-1

Table 169: Elements of PNS_IF_ CONFIGURED_SUBM_STRUCT_T

To get the current set of configured submodules send the request packet with the command
PNS_IF_GET_CONFIGURED_SUBM_REQ to the stack, the current configuration will be read and stored in
the confirmation structure.

The confirmation packet has a limited size, depending on the maximal DPM packet length. The
maximal count of returned submodule configuration data is limited by MAX_SUBMODULE_CNT
(see Packet Structure Reference). If more submodules are configured, the error code TLR_E_FAIL
in ulSta will be returned.

If no submodule is configured, the error code TLR_E_PNS_IF_NO_MODULE_CONFIGURED in ulSta

will be returned.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 267/390
7.4.18 Set Submodule State Service

With this service the application has the possibility to change the submodule state. This is useful in
e.g. gateway applications. Using this service the user application is able to influence the
occurrence of a submodule in the ModuleDiffBlock.

Note:

This service is only usable for the user application if 10xS is handled by the user
application as well. If IOxS is not handled by the application the stack will not allow the
usage of this service.

Note:
This service is available starting with PROFINET IO Device stack V3.5.16

A possible use case for this service is the following scenario:

A gateway application requires some parameter records to configure the underlying network. The
content of the records is expected by the underlying network to work properly. Missing or invalid
parameters disallow using some (or all) of the nodes of the underlying network.

To be able to receive the parameter records the application is required to adapt the local
PROFINET submodule configuration during Connection establishment by evaluating Check
Indication and using the Extended Plug Submodule Request. After the parameters have been
received via Write Record Indication and the application received the Parameter End Indication it
configures and parameterizes the underlying network. If an error occurs in this phase, it can be
indicated to the IO-Controller by setting the submodule state of the erroneous submodules to
“ApplicationReady pending”. In addition, the application might generate a specific diagnosis to
indicate the problem on an additional level. The IOPS of the affected submodules needs to be set
to “bad”. Afterwards the ApplicationReady shall be sent by application using the Application Ready
Request.

Note:

The submodule state is bound to the submodule and is only changed by the user
application. Thus if the state is set to “ApplicationReady pending” and the AR is
terminated and reestablished afterwards, the submodule will be reported with
“ApplicationReady pending” by the protocol stack.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

268/390

Setting the submodule state back to “good” differs in handling depending if the data exchange is

active or not.

[Suhumdule State shall be changed to gqmd]

!

[Set submodule state to gmclj

data exchanee 15 active

true

[F:l et IOPS to goo d]

[Generate Eetirn of Submodule Alamlj

false

Figure 27: SetSubModuleState from bad to good

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 269/390

7.4.18.1 Set Submodule State Request

To set the Submodule State the following packet shall be used.

Only theses states are supported: “ApplicationReady pending”, “Submodule ordinated locked” and
“Okay”.

It is possible to set the state of multiple submodules at the same time to the state
“ApplicationReady pending”. However, it is not possible to set multiple submodules at the same
time to the state “okay”. Setting the submodule state “okay” needs to be done in a single request
for each submodule whose state is now “okay”.

The request packet has a limited size, depending on maximal DPM packet length. The maximal
count of configured submodules is limited to 98 (see Packet Structure Reference). If more
submodules are configured, the error code TLR_E_FAIL in ulSta will be returned.

Note:

A submodule in the state “ApplicationReady pending” shall have its IOPS set to “bad”. In
consequence if the submodule state changes back to “good” the IOPS needs to be
changed to “good” by the application. This requires sending a ReturnOfSubmodule Alarm
(see section 7.4.5.1) which must be done by the application as well.

Packet Structure Reference
/* Request packet */

/* the submodule is locked by application */

#define PNS_IF_SET_SUBM_STATE_SUBM_SUPERORD_LOCKED (&H)
/* the submodule is not yet ready for data exchange */
#define PNS_IF_SET_SUBM_STATE_SUBM_APPL_READY_PENDING (2)
/* the submodule is no longer locked */

#define PNS_IF_SET_SUBM_STATE_SUBM_OKAY ©

typedef _ PACKED _PRE struct PNS_IF_SET SUBM_STATE_SUBMBLOCK Ttag
{
/* the APl the submodule belongs to */
TLR_UINT32 ulApi;
/* the slot the submodule resides */
TLR_UINT16 usSlot;
/* the subslot the submodule resides */
TLR_UINT16 usSubslot;
/* the submodule state (see above) */
TLR_UINT16 usSubmState;
/* the module state, reserved for future use! */
TLR_UINT16 usModuleState;
} _ PACKED_POST PNS_IF_SET_SUBM_STATE_SUBMBLOCK_T;

typedef _ PACKED_PRE struct PNS_IF_SET SUBM_STATE DATA REQ Ttag

/* amount of submodules contained in this packet */
TLR_UINT32 ulSubmCnt;
/* the first of ulSubmCnt submodule datasets */
PNS_IF_SET_SUBM_STATE_SUBMBLOCK_T atSubm[1];

} _ PACKED_POST PNS_IF_SET_SUBM_STATE_DATA REQ T;

typedef struct PNS_IF_SET SUBM_STATE REQ Ttag
TLR_PACKET_HEADER_T tHead;

PNS_IF_SET SUBM_STATE_DATA REQ T tData;
} PNS_IF_SET _SUBM_STATE REQ T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

270/390

Packet Description

Structure PNS_IF_SET_SUBM_STATE_REQ T

Type: Request

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 16 +n Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet
ulSta UINT32 0 Status not in use for request.
ulCmd UINT32 0x1F92 PNS_IF_SET_SUBM_STATE_REQ-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_IF_SET_SUBM_STATE_REQ_DATA_T
ulSubmCnt UINT32 1..129 The amount of submodules contained in the packet.
ulApi UINT32 The API of the first submodule.
usSlot UINT16 The Slot of the first submodule.
usSubslot UINT16 The subslot of the first submodule.
usSubmState UINT16 The new submodule state (see below)
usModuleState | UINT16 Reserved for future use. Set to 0.

Table 170: PNS_I1F_SET_SUBM_STATE_REQ-T — Set Submodule State Request

Value Name Description

0 PNS_IF_SET_SUBM_STATE_SUBM_OKAY The submodule state is okay, it is ready
for valid data exchange.

1 PNS_IF_SET_SUBM_STATE_SUBM_SUPERORD_LOCKED The submodule is locked by application

2 PNS_IF_SET_SUBM_STATE_SUBM_APPL_READY_PENDING The submodule is not ready for valid

data exchange.

Table 171: Possible Values of usSubmState

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 271/390

7.4.18.2 Set Submodule State Confirmation
The stack will return this packet to the application.
Packet Structure Reference

/* Confirmation packet */
typedef TLR_EMPTY_PACKET T PNS_IF_SET_SUBM_STATE_CNF_T;

Packet Description

Structure PNS_IF_SET_SUBM_STATE_CNF_T

Type: Confirmation

Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 0 Packet data length in bytes

ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 See below.

ulCmd UINT32 0x1F93 PNS_IF_SET_SUBM_STATE_CNF-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Table 172: PNS_I1F_SET_SUBM_STATE_CNF-T - Set Submodule State Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 272/390

7.4.19

Get Parameter Service

This service can be used by the application to retrieve runtime parameters from the protocol stack.

Note:

In this service the confirmation packet is larger than the request packet. If the application
is directly programming the stack’s AP-Task Queue, the application has to provide a
buffer which is large enough to hold the confirmation data.

Note:

This service is available starting with PROFINET IO Device Stack V3.5.34.0. The
parameter type PNS_IF_ PARAM_SUBMODULE_CYCLE is available since Stack
version V3.5.47.0.

Parameter types PNS_IF_PARAM_ETHERNET and PNS_IF_PARAM_DIAGNOSIS are
available from version V3.10.1.0

Note:

The submodule reference parameters are ignored by the Protocol Stack for global
parameters.

7.4.19.1

Get Parameter Service

Packet Structure Reference
enum PNS_IF_PARAM_Etag

{

PNS_IF_PARAM_MRP
PNS_IF_PARAM_SUBMODULE_CYCLE
PNS_IF_PARAM_ETHERNET
PNS_IF_PARAM_DIAGNOSIS
PNS_IF_PARAM_IMO_DATA
PNS_IF_PARAM_IM5_DATA

}:

LI 1 U | A V1|
OO~ WNPE

typedef enum PNS_IF_PARAM Etag PNS_IF_PARAM E;

typedef struct PNS_IF_PARAM COMMON_Ttag PNS_IF_PARAM_COMMON_T;

struct PNS_IF_PARAM_COMMON_ Ttag

{

TLR_UINT16 usPrmType;
TLR_UINT16 usPadding;
TLR_UINT32 ulApi;
TLR_UINT16 usSlot;
TLR_UINT16 usSubslot;

}:

typedef struct PNS_IF_GET_PARAM_REQ Ttag PNS_IF_GET PARAM_REQ T;

struct PNS_IF_GET_PARAM_REQ Ttag

TLR_PACKET HEADER T tHead;

};

PNS_IF_PARAM_COMMON_T tData;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

273/390

Packet Description

Structure PNS_IF_GET_PARAM_REQ T

Type: Request

Area Variable Type Value / Description
Range
Head structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process
queue
ulSrc UINT32 Source Queue-Handle of application task process
queue
ulDestld UINT32 |0 Destination End Point Identifier. Not in use, set to zero
for compatibility reasons.
ulSrcid UINT32 |0...2%2-1 Source End Point Identifier, specifying the origin of the
packet inside the Source Process.
ulLen UINT32 |2o0r12 Packet data length in bytes. 2 for generic parameters,
12 for submodule specific parameters
ulld UINT32 |0..2%2-1 Packet identification as uniqgue number generated by
the source process of the packet
ulSta UINT32 |0 Status not used for requests. Set to zero.
ulCmd UINT32 | Ox1F64 PNS_IF_GET_PARAMETER_REQ - Command
ulExt UINT32 |0 Extension not in use, set to zero for compatibility
reasons
ulRout UINT32 |0 Routing, set to zero
Data structure PNS_1F_PARAM_COMMON_T
usPrmType UINT16 |1..4 The parameter to retrieve. See Table 174
usPadding UINT16 |0 Padding, Set to Zero for future compatibility.
ulApi UINT32 Referenced Submodule’s Api
usSlot UINT16 Referenced Submodule’s Slot
usSubslot UINT16 Referenced Submodule’s Subslot

Table 173: PNS_I1F_GET_PARAMETER_REQ_T - Get Parameter Request

The following values are valid for usPrmType:

Symbolic Name Numerical |Description
Value

PNS_IF_PARAM_MRP 1 Media Redundancy Parameters (Global Parameter)
PNS_IF_PARAM_SUBMODULE_CYCLE 2 Submodule Process Data Cycle (Output)
PNS_IF_PARAM_ETHERNET 3 Port submodule related Ethernet parameters
PNS_IF_PARAM_DIAGNOSIS 4 List of pending diagnosis PDEV
PNS_IF_PARAM_IMO_DATA 5 The values the protocol stack would deliver for 1&MO if

handling of 1&M by protocol stack is enabled.
PNS_IF_PARAM_IM5_DATA 6 The values the protocol stack would deliver form 1&M5 if

handling of &M by protocol stack is enabled.

Table 174: PNS_IF_PARAM_E - Valid parameter options

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 274/390

7.4.19.2 Get Parameter Confirmation

This packet will be returned by the stack as response to the Get Parameter Request. It contains
the requested information on success.

Packet Structure Reference

typedef struct PNS_IF_PARAM_COMMON_Ttag PNS_IF_PARAM_COMMON_T;

struct PNS_IF_PARAM_COMMON_Ttag

uintlé_t usPrmType;

};

typedef struct PNS_IF _UUID_Ttag
TLR_UINT32 ulDatal; /** 00:04, uuid data 1, 32Bit */
TLR_UINT16 usData2; /** 04:02, uuid data 2, 16Bit */
TLR_UINT16 usData3; /** 06:02, uuid data 3, 16Bit */
TLR_UINT8 abData4[8]; /** 08:08, uuid data 4, 8x8Bit */

} PNS_IF_UUID_T;

struct PNS_IF_PARAM_MRP_Ttag

{
uintle_t usPrmType;
uint8_t bState;
uint8_t bRole;
PNS_IF_UUID_T tUUID;
uint8_t szDomainName[240] ;
};

typedef struct PNS_IF_PARAM_SUBMODULE_CYCLE_Ttag PNS_IF_PARAM_SUBMODULE_CYCLE_T;

struct PNS_IF _PARAM_SUBMODULE_CYCLE Ttag
{
TLR_UINT16 usPrmType;
TLR_UINT16 usPadding;
TLR_UINT32 ulApi;
TLR_UINT16 usSlot;
TLR_UINT16 usSubslot;
TLR_UINT32 ulUpdatelnterval;
TLR_UINT16 usSendClock;
TLR_UINT16 usReductionRatio;
TLR_UINT16 usDataHoldFactor;

}:
typedef struct PNS_IF_PARAM_ETHERNET Ttag PNS_IF_PARAM_ETHERNET T;

__PACKED_PRE struct __ PACKED_POST PNS_IF_PARAM_ETHERNET Ttag

{
uintlé_t usPrmType;
uintlé_t usMauType; /* real Mutype */
uint32_t ulPowerBudget; /* measured power budget in dB */
uint32_t ulCableDelay; /* measured cable delay in ns */
};

#define MAX_DIAGNOSIS_ENTRIES CNT 32
typedef struct PNS_IF_DIAGNOSIS_ENTRY_ Ttag PNS_IF_DIAGNOSIS_ENTRY_ T;

__ PACKED_PRE struct _ PACKED_POST PNS_IF_DIAGNOSIS_ENTRY_Ttag
{

/* subslot the diagnosis alarm belongs to */

uintlé_t usSubslot;

/* Diagnosis error type */

uintlé_t uskErrorType;

/* Diagnosis extended error type */

uintlé_t USExtErrorType;

¥

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

275/390

typedef struct PNS_IF_DIAGNOSIS_Ttag PNS_IF_DIAGNOSIS_T;

__PACKED_PRE struct _ PACKED_POST PNS_IF_DIAGNOSIS_Ttag
{

uintlé_t usPrmType;
/* The amount of diagnosis entries contained in the confirmation
uintle_t usDiagnosisCnt;

/** Diagnosis data, shall contain usDiagnosisCnt entries */
PNS_IF_DIAGNOSIS_ENTRY_T atDiagnosis[MAX_DIAGNOSIS_ENTRIES_CNT]:

}:
typedef struct PNS_IF_PARAM_IMO_DATA Ttag PNS_IF_PARAM_IMO_DATA T;
__PACKED_PRE struct __ PACKED_POST PNS_IF_PARAM_IMO_DATA Ttag

PNS_IF_IMO_DATA_T tIMOData;
}:

typedef struct PNS_IF_PARAM IM5 DATA Ttag PNS_IF_PARAM_IM5_DATA T;

PACKED_PRE struct _ PACKED_POST PNS_IF_PARAM_IM5 DATA Ttag

Py

PNS_IF_IM5_DATA T tIM5Data;

-

typedef union PNS_IF_PARAM_Ttag PNS_IF_PARAM_T;

union PNS_IF_PARAM_Ttag

{
PNS_IF_PARAM_COMMON_T tCommon;
PNS_IF_PARAM_MRP_T tMrp;
PNS_IF_PARAM_SUBMODULE_CYCLE_T tSubmoduleCycle;
PNS_IF_PARAM_ETHERNET T tEthernetPrm;
PNS_IF_DIAGNOSIS T tDiagnosisData;
PNS_IF_PARAM_IMO_DATA T tIMOPrm;
PNS_IF_PARAM_IM5 DATA T tIM5PIm;};

typedef struct PNS_IF_GET_PARAM CNF_Ttag PNS_IF_GET_PARAM_CNF_T;
struct PNS_IF_GET_PARAM_CNF_Ttag

TLR_PACKET HEADER T tHead;
PNS_IF_PARAM_T tData;

};

*/

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 276/390

Packet Description

Structure PNS_1F_GET_PARAM_CNF_T Type: Confirmation
Area | Variable Type Value / | Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of
PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of
application task process
queue
ulDestld UINT32 0 Destination End Point
Identifier. Not in use, set to
zero for compatibility reasons.
ulSrcld UINT32 0... Source End Point Identifier,
232 1 specifying the origin of the
packet inside the Source
Process.
ullLen UINT32 >2 Packet data length in bytes.
Depends on requested
information.
ulld UINT32 0.. Packet identification,
2%2-1 untouched
ulSta UINT32 See below.
ulCmd UINT32 0x1F65 PNS_IF_GET_PARAM_C—F -
Command
ulExt UINT32 0 Extension, ignore
ulRout UINT32 X Routing, ignore

Data union PNS_IF_PARAM_T

tCommon PNS_IF_PARAM_COMMON_T Common structure
t™rp PNS_IF_PARAM_MRP_T MRP parameter
tSubmoduleCycle | PNS_IF_PARAM_SUBMODULE_CYCLE_T Submodule cycle parameter
tEthernetPrm PNS_IF_PARAM_ETHERNET_T Po-t -Submodule Ethernet
parameter
tDiagnosisData |PNS_IF_DIAGNOSIS T PDev pending diagnosis
tIMOData PNS_IF_IMO_DATA_T 1&MO data implemented by
protocol stack itself.
tIM5Data PNS_IF_IM5_DATA_T 1&M5 data implemented by
protocol stack itself

Table 175: PNS_I1F_GET_PARAM_CNF_T - Get Diagnosis Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

2771390

Coding of the field tMrp

Variable Type Value / Range Description

usPrmType UINT16 1 Mrp parameter option value

bState UINT8 0-3 Mrp State. See Table 177

bRole UINT8 0-4 Mrp Role of the Device. See Table 178

tuulID uuibD Mrp UUID

szDomainName | UINT8[240] Mrp Domain Name. String Length is Packet Length minus 20

Table 176 : PNS_IF_PARAM_MRP_T - M

rp parameters

The following values are valid for bState:

Symbolic Name Numerical |Description
Value

MRP_STATE_DISABLED 0 MRP was disabled by the Protocol Stack

MRP_STATE_ENABLED_DEFAULT|1 MRP was enabled by the Protocol Stack using default MRP
parameters. (No parameter was written by controller / Factory
Reset)

MRP_STATE_ENABLED_PRM 2 MRP was enabled on behalf of Controller. (The corresponding
parameter was set with MRP enabled)

MRP_STATE_DISABLED_PRM 3 MRP was disabled on behalf of Controller. (The corresponding
parameter was et with MRP disabled)

Table 177: PNS_IF_PARAM_MRP_STATE_E - Valid values for MRP state.

The following values are valid for bState:

Symbolic Name Numerical |Description

Value
MRP_ROLE_NONE 0 MRP is disabled
MRP_ROLE_MRP_CLIENT 1 MRP is configured for Client Mode.

Table 178: PNS_IF_PARAM_MRP_ROLE_E - Valid values for MRP Role

Coding of the field tSubmoduleCycle

Variable Type Value /| Description

Range
usPrmType UINT16 2 Submodule cycle option value
usPadding UINT16 Ignore for future compatibility
ulApi UINT32 Api of the submodule
usSlot UINT16 Slot of the submodule
usSubslot UINT16 Subslot of the submodule

ulUpdatelnterval | UINT32

Output process data update interval in nanoseconds

usSendClock

UINT16

PROFINET Send Clock

usReductionRatio | UINT16

PROFINET Reduction Ratio

usDataHoldFactor | UINT16

Output process data watchdog factor: The output process data
timeout is usDataHoldFactor x ulUpdatelnterval.

Table 179 : PNS_IF_PARAM_SUBMODULE_CYCLE_T - Submodule cycle parameter

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 278/390
Coding of the field tEthernetPrm

Variable Type Value / Description

Range

usPrmType UINT16 3 Ethernet parameter option value

usMauType UINT16 real mautype

ulPowerBudget UINT32 measured power budget in dB

ulCableDelay UINT32 measured cable delay in ns

Table 180 : PNS_IF_PARAM_ETHERNET_T - Ethernet parameters

Coding of the field tD1agnosisData
Variable Type Value / | Description
Range
usPrmType UINT16 4 Diagnosis option value
usDiagnosisCnt UINT16 0..32 amount of diagnosis entries contained in
the confirmation
atDiagnosis[32] | PNS_IF_DIAGNOSIS_ENTRY_T Diagnosis data see Table 182
Table 181 : PNS_IF_DIAGNOSIS_T - Diagnosis data
Coding of the field atDiagnosis:
Variable Type Value [/ | Description
Range
usSubslot UINT16 subslot the diagnosis alarm belongs to
usChannelProp UINT16 Diagnosis channel properties. See Table 227
usChannelErrType UINT16 Diagnosis error type. See Table 231
usExtChannelErrType | UINT16 Diagnosis extended error type. See Table 232

Table 182 : PNS_IF_DIAGNOSIS_ENTRY_T - Diagnosis entry

Coding of the field tIMOPrm
Variable Type Value / | Description
Range
usPrmType UINT16 5 Submodule cycle option value
usPadding UINT16 Ignore for future compatibility
tiIMOData PNS_IF_IMO_DATA_T See Read |&M Response

Table 183 : PNS_IF_PARAM_IMO_DATA_T - Stack I&MO record content

Coding of the field tIM5Prm
Variable Type Value / | Description
Range
usPrmType UINT16 6 Submodule cycle option value
usPadding UINT16 Ignore for future
compatibility
tIM5Data PNS_IF_IM5 DATA T See Read I&M Response

Table 184 : PNS_IF_PARAM_IM5_DATA_T — Stack I&M5 record content

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 279/390
7.4.20 Add PE entity service

The Add PE entity service is part of the PE ASE implementation of the PROFINET Device stack.
The application can use this service to add a PE entity to the PE ASE. The implementation
supports one PE entity per submodule.

_) Note:

. By default all PE entity services are deactivated. Please use
PNS_IF OEM_PARAMETERS TYPE 10 T Set OEM Parameters for ulParamType =
10 to activated PE entity service.

7.4.20.1 Add PE entity request

The application uses this packet to initiate the Add PE entity service. The protocol stack will
validate the parameters of the packet and add the entity on success. The entities operational mode
will be initialized to value “Ready to operate” (OxFF). The protocol stack will internally generate the
PROFINET alarms associated with that operation.

Packet Structure Reference
typedef struct PNS_IF_ADD_PE_ENTITY_REQ DATA Ttag PNS_IF_ADD_PE ENTITY_REQ DATA T;
struct PNS_IF_ADD PE_ENTITY_REQ DATA_ Ttag

uint32_t ulAPI;

uintl6é_t usSlot;
uintl6é_t usSubslot;

}
typedef struct PNS_IF_ADD_PE_ENTITY_REQ Ttag PNS_IF_ADD_PE_ENTITY REQ T;
struct PNS_IF_ADD_PE_ENTITY_ REQ Ttag

PNS_IF_PCK_HEADER T tHead;
PNS_IF_ADD_PE_ENTITY_REQ DATA T tData;

};

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

280/390

Packet Description

Structure PNS_IF_ADD_PE_ENTITY REQ T

Type: Request

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 8 Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet
ulSta UINT32 0 Status not in use for request.
ulCmd UINT32 0x1F94 PNS_IF_ADD_PE_ENTITY_REQ-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_IF_ADD_PE_ENTITY_REQ DATA_T
ulApi UINT32 The API of the submodule associated with the the PE entity.
usSlot UINT16 The Slot of the submodule associated with the PE entity.
usSubslot UINT16 The subslot of the submodule associated with the PE entity.

Table 185: PNS_IF_ADD _PE _ENTITY_REQ-T — Add PE entity request

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

281/390

7.4.20.2

Add PE entity confirmation

The protocol stack returns this packet to the application in order to confirm adding a PE entity.

Packet Structure Reference

typedef PNS_IF_EMPTY_PCK_T PNS_IF_ADD_PE_ENTITY_CNF_T;

Packet Description

Structure PNS_IF_ADD_PE_ENTITY_CNF_T

Type: Confirmation

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrcld UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 0 Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet
ulSta UINT32 See below.
ulCmd UINT32 0x1F95 PNS_IF_ADD_PE_ENTITY_CNF-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch

Table 186: PNS_1F_ADD_PE_ENTITY_CNF-T — Add PE Entity confirmation

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 282/390

7.4.21 Remove PE entity service

The Remove PE entity service is part of the PE ASE implementation of the PROFINET Device
Stack. The application can use this service to remove a PE entity from the PE ASE. The protocol
stack will internally generate the PROFINET alarms associated with that operation.

_) Note:

. By default all PE entity services are deactivated. Please use
PNS_IF_OEM_PARAMETERS_TYPE_10 T Set OEM Parameters for ulParamType =
10 to activated PE entity service.

7.4.21.1 Remove PE entity request
The application uses this packet to initiate the Remove PE entity service. The protocol stack will
validate the parameters of the packet and remove the entity on success.

Packet Structure Reference
typedef PNS_IF_ADD_PE_ENTITY_REQ DATA T PNS_IF_REMOVE_PE_ENTITY_REQ DATA T;

typedef struct PNS_IF_REMOVE_PE_ENTITY_REQ Ttag PNS_IF_REMOVE_PE_ENTITY_REQ T;
struct PNS_IF_REMOVE_PE_ENTITY_REQ Ttag

PNS_IF_PCK_HEADER T tHead;
PNS_IF_REMOVE_PE_ENTITY_REQ DATA_T tData;

};

Packet Description

Structure PNS_IF_REMOVE_PE_ENTITY_REQ T

Type: Request

Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 8 Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as uniqgue number generated by the source
process of the packet

ulSta UINT32 0 Status not in use for request.

ulCmd UINT32 0x1F96 PNS_IF_REMOVE_PE_ENTITY_REQ-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

283/390

Structure PNS_IF_REMOVE_PE_ENTITY_REQ T

Type: Request

Area | Variable

Type

Value /
Range

Description

Data | structure PNS_1F_REMOVE_PE

_ENTITY_REQ DATA T

ulApi UINT32 The API of the submodule associated with the the PE entity.
usSlot UINT16 The Slot of the submodule associated with the PE entity.
usSubslot UINT16 The subslot of the submodule associated with the PE entity.

Table 187: PNS_IF_REMOVE_PE_ENTITY_REQ-T — Remove PE entity request

7.4.21.2 Remove PE entity confirmation

The protocol stack returns this packet to the application in order to confirm removing a PE entity.

Packet Structure Reference

typedef PNS_IF_EMPTY_PCK_T PNS_IF_REMOVE_PE_ENTITY_CNF_T;

Packet Description

Structure PNS_IF_REMOVE_PE_ENTITY_CNF_T

Type: Confirmation

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 0 Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as unique number generated by the source
process of the packet
ulSta UINT32 See below.
ulCmd UINT32 0x1F97 PNS_IF_REMOVE_PE_ENTITY_CNF-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch

Table 188: PNS_1F_REMOVE_PE_ENTITY_CNF-T — Remove PE Entity confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 284/390
7.4.22 Update PE entity service

The Update PE entity service is part of the PE ASE implementation of the PROFINET Device
Stack. The application can use this service to update the operational mode of an PE entity within
the PE ASE. The protocol stack will internally generate the PROFINET alarms associated with that

operation.

_) Note:

. By default all PE entity services are deactivated. Please use
PNS_IF_OEM_PARAMETERS_TYPE_10 T Set OEM Parameters for ulParamType =
10 to activated PE entity service.

7.4.22.1 Update PE entity request

The application uses this packet to initiate the Update PE entity service. The protocol stack will
validate the parameters of the packet and update the operational mode of the entity on success.

Packet Structure Reference
typedef struct PNS_IF_UPDATE_PE_ENTITY_REQ DATA Ttag PNS_IF _UPDATE_PE_ENTITY_REQ DATA T;

struct PNS_IF_UPDATE_PE_ENTITY_REQ_DATA_Ttag
{

uint32_t ulAPI;

uintl6é_t usSlot;

uintl6_t usSubslot;

uint8_t bOperationalMode;

}:
typedef struct PNS_IF_UPDATE_PE_ENTITY_REQ Ttag PNS_IF_UPDATE_PE ENTITY_REQ T;
struct PNS_IF_UPDATE_PE ENTITY_REQ Ttag

PNS_IF_PCK_HEADER T tHead;
PNS_IF_UPDATE_PE_ENTITY_REQ DATA T tData;

};

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

285/390

Packet Description

Structure PNS_IF_UPDATE_PE_ENTITY_REQ T

Type: Request

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrclid UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 9 Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet
ulSta UINT32 0 Status not in use for request.
ulCmd UINT32 0x1F98 PNS_IF_UPDATE_PE_ENTITY_REQ-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch
Data | structure PNS_IF_UPDATE_PE_ENTITY_REQ_DATA_T
ulApi UINT32 The API of the submodule associated with the the PE entity.
usSlot UINT16 The Slot of the submodule associated with the PE entity.
usSubslot UINT16 The subslot of the submodule associated with the PE entity.
bOperationalM | UINTS8 The current operational mode of the PE entity as defined by
ode PROFenergy specification.

Table 189: PNS_IF_UPDATE_PE_ENTITY_REQ-T — Update PE entity request

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

286/390

7.4.22.2 Update PE entity confirmation

The protocol stack returns this packet to the application in order to confirm updating a PE entity.
The confirmation is be returned independendly of associated PROFINET alarm processing, e.g.

before the required alarms have been issued.

Packet Structure Reference

typedef PNS_IF_EMPTY_PCK_T PNS_IF_UPDATE_PE_ENTITY_CNF_T;

Packet Description

Structure PNS_IF_UPDATE_PE_ENTITY_CNF_T

Type: Confirmation

Area | Variable Type Value / Description
Range
Head | structure TLR_PACKET_HEADER_T
ulDest UINT32 Destination queue handle of PNS_IF task process queue
ulSrc UINT32 Source Queue-Handle of application task process queue
ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.
ulSrcld UINT32 0..2%-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.
ulLen UINT32 0 Packet data length in bytes
ulld UINT32 0..2%-1 Packet identification as uniqgue number generated by the source
process of the packet
ulSta UINT32 See below.
ulCmd UINT32 0x1F99 PNS_IF_UPDATE_PE_ENTITY_CNF-command
ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons
ulRout UINT32 X Routing, do not touch

Table 190: PNS_I1F_UPDATE_PE_ENTITY_CNF-T — Update PE Entity confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 287/390

7.4.23 Send Alarm Service

This service can be used by the application to send a user specific alarm.

. Note:
This service replaces Process Alarm Service. It can be used to indicate Process alarm or
other user specific alarm types.

7.4.23.1 Send Alarm Request

This packet causes the stack to send a user specific Alarm to the IO-Controller.

Packet Structure Reference
typedef enum {

PNS_IF_ALARM_TYPE_PROCESS = 0x0002,
PNS_IF_ALARM_TYPE_STATUS = 0x0005,
PNS_IF_ALARM_TYPE_UPDATE = 0x0006,
PNS_IF_ALARM_TYPE_ISO_PROBLEM = 0x0010,
PNS_IF_ALARM_TYPE_UPLOAD RETRIEVAL = OxOO1E,
PNS_IF_ALARM_TYPE_MANUF_SPEC_START = 0x0020,
PNS_IF_ALARM_TYPE_MANUF_SPEC_END = OxO007F,

} PNS_IF_ALARM_TYPE_E;

typedef enum {
PNS_IF_ALARM_USER_STRUCTURE_ID_MANUF_SPEC_STAR
PNS_IF_ALARM_USER_STRUCTURE_ID_MANUF_SPEC_END
} PNS_IF_ALARM_USER_STRUCTURE_ID E;

0x0000,
OX7FFF,

typedef _ PACKED_PRE struct PNS_IF_UPLOAD_RETRIEVAL_RECORD_DATA Ttag
uint32_t ulRecordlIndex;
uint32_t ulRecordLength;

} PACKED_POST PNS_IF_UPLOAD_RETRIEVAL_RECORD_DATA T;

typedef enum PNS_IF_ALARM_UPLOADT RETRIEVAL_SUBTYPE_Etag

PNS_IF_ALARM_UPLOAD_SLECTED_RECORDS = 0x0001,
PNS_IF_ALARM_RETRIEVAL_SLECTED RECORDS = 0x0002,
PNS_IF_ALARM_RETRIEVAL_ALL_RECORDS = 0x0003,

} PNS_IF_ALARM_UPLOADT RETRIEVAL_SUBTYPE E;
typedef _ PACKED_PRE struct PNS_IF _UPLOAD RETRIEVAL_DATA Ttag

uint8_t bAlarmSubtype;
}_PACKED_POST PNS_IF_UPLOAD_RETRIEVAL_DATA T;

typedef union PNS_IF_ALARM DATA Ttag
uint8_t abManufacturerData[PNS_IF_MAX_ALARM_DATA LEN];
PNS_IF_UPLOAD_RETRIEVAL_DATA T tUploadRetrieval;

IPNS_IF_ALARM_DATA T:

/* Request packet */
typedef _ PACKED_PRE struct PNS_IF_SEND_ALARM_REQ DATA Ttag

{
uint32_t ulApi;
uint32_t ulSlot;
uint32_t ulSubslot;
uint32_t hAlarmHandle;
uintlé_t usAlarmType;
uintlé_t usUserStructld;
uintlé_t usAlarmDatalen;

PNS_IF_ALARM_DATA T tAlarmData;
3} _ PACKED_POST PNS_IF_SEND_ALARM_REQ DATA T;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface 288/390

typedef _ PACKED_PRE struct PNS_IF_SEND_ALARM REQ Ttag

/** packet header */

PNS_IF_PCK_HEADER_ T tHead;
/** packet data */
PNS_IF_SEND_ALARM_REQ DATA T tData;

} _ PACKED_POST PNS_IF_SEND_ALARM REQ T;

Packet Description

Structure PNS_IF_SEND_ALARM_REQ_T Type: Request

Area| Variable Type Value / Description
Range

Head structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process
queue

ulSrc UINT32 Source Queue-Handle of application task process
queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to
zero for compatibility reasons.

ulSrclid UINT32 0...2%2-1 | Source End Point Identifier, specifying the origin
of the packet inside the Source Process.

ulLen UINT32 24 +n Packet data length in bytes. n is the value of
usLenAlarmData.

ulld UINT32 0...2%2-1 | Packet identification as unique number generated
by the source process of the packet

ulSta UINT32 0 Status not in use for request.

ulCmd UINT32 0x1F5C PNS_IF_SEND_ALARM_REQ-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility
reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_SEND_ALARM_REQ DATA T

ulApi UINT32 The API the alarm belongs to.

ulSlot UINT32 The Slot the alarm belongs to.

ulSubslot UINT32 The Subslot the alarm belongs to.

hAlarmHandle UINT32 A user specific alarm handle. The application is
free to choose any value.

usAlarmType UINT16 Alarm type to generate see below

usUserStructlid UINT16 The User Structure Identifier.

usAlarmDatalLen UINT16 0..1024 The length of the alarm data

tAlarmData PNS_IF_ALARM_DATA T The alarm data.

Table 191 PNS_IF_SEND_ALARM_REQ_T Send alarm request

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Packet Interface

289/390

The following values are valid for usAlarmType:

Symbolic Name Numerical |Description
Value
PNS_' F_ALARM_TYPE_PROCESS 0x0002 Process alarm notification
PNS_' F_ALARM_TYPE_STATUS 0x0005 status Change notification
PNS_IF_ALARM_TYPE_UPDATE 0x0006 |Change of parameter notification
PNS_IF_ALARM_TYPE_1SO_PROBLEM 0x0010 ||sochronous Mode Problem Notification
PNS_IF_ALARM_TYPE_UPLOAD_ RETRIEVAL 0x001E [|Alarm notification for upload and storage of device
specific record data objects
PNS_' F_ALARM_TYPE_MANUF_SPEC 0x0020 - manufacturer speciﬁc alarm types
0x007F
Reserved other Reserved for future usage

Table 192 Possible values for Alarm type

The following values are valid for usUserStructlid:

Symbolic Name

Numerical Value

Description

PNS_IF_ALARM_USER_STRUCTURE_ID_MAN
UF_SPEC

0x0000 — OX7FFF

Manufacturer specific structure

other

Reserved

usUserStructld will in case of upload and
retrieval alarm type automatically assigned by
the stack.

Table 193 Possible values for user structure identifier

Union PNS_IF_ALARM_DATA T

Variable Type

Description

abManufacturerData | UINT8[1024]

Manufacturer specific alarm data

tUploadRetrieval

PNS_IF_UPLOAD_RETRIEVAL_DATA T

Upload and Retreival alarm data. It shall be used in
conjunction with
PNS_IF_ALARM_TYPE_UPLOAD_ RETRIEVAL

Table 194 Alarm data definition

abManufacturerData

This parameter can be used to report optional manufacturer data. It shall only be used in
conjunction with following alarm types:

Process alarm

Status alarm

Update alarm

Isochronous mode problem
Manufacturer specific alarm

tUploadRetrieval

alarm

This parameter shall only be used if the alarm type is set to “Upload and Retrieval alarm”.

With this parameter the application indicates the existence of device specific record objects
that shall be stored outside of 10 Device or retrieval request of already stored record objects.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface

290/390

Structure PNS_IF_UPLOAD_RETRIEVAL_DATA_T

Areal Variable Type Value / Range | Description
bAlarmSubtype UINT8 1-3 Alarm subtype of upload and retrieval
notification
tUploadRetrievalData | PNS_IF_UPLOAD_RETRIEVAL _ The number of entries in the list is

RECORD_DATA_T[1-127]

determined by the packet length.

Table 195 Upload and Retri

eval structure definition

The following values are valid for bAlarmSubtype:

Symbolic Name Numerical |Description
Value
PNS_IF_ALARM_UPLOAD_SLECTED_RECORDS 1 Shall be used to indicate the existence of
record data object, which shall be stored
outside of |0 Device.
PNS_IF_ALARM_RETRIEVAL_SLECTED_RECORDS |2 Shall be used to send a retrieval request for
specifc record objects
PNS_IF_ALARM_RETRIEVAL_ALL_RECORDS 3 Shall be used to send a retrieval request for
all stored record objects

Table 196 Possible value for Upload and Retrieval alarm subtype

Structure PNS_IF_UPLOAD_RETRIEVAL_RECORD_DATA T

Area| Variable

Type Value / Range

Description

ulRecordIndex

UINT32 | 0x00000000 -
OxO0000FFFF

Index of record data object that shall be uploaded or retrieval

ulRecordLength

UINT32 | 0x00000001-
OXFFFFFFFF

Length of record data object that shall be uploaded or retrieval

Table 197 Upload and Retri

eval record data description

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Packet Interface 291/390

7.4.23.2 Send Alarm Confirmation
This packet is returned to the application by the stack after the controller confirmed the alarm. The
reaction of the IO-Controller is reported to the application within the confirmation.
Packet Structure Reference
typedef struct PNS_IF_SEND_ALARM_CNF_DATA Ttag

TLR_UINT32 hAlarmHandle;

TLR_UINT32 ulPnio;
} PNS_IF_SEND_ALARM_CNF_DATA_T;
typedef struct PNS_IF _SEND_ALARM_CNF_Ttag

TLR_PACKET_HEADER_T tHead;

PNS_IF_SEND_ALARM_CNF _DATA T tData;
} PNS_IF_SEND_ALARM_CNF T;

Packet Description

Structure PNS_1F_SEND_ALARM_CNF_T Type: Confirmation
Area | Variable Type Value / Description
Range

Head | structure TLR_PACKET_HEADER_T

ulDest UINT32 Destination queue handle of PNS_IF task process queue

ulSrc UINT32 Source Queue-Handle of application task process queue

ulDestld UINT32 0 Destination End Point Identifier. Not in use, set to zero for
compatibility reasons.

ulSrclid UINT32 0..2%2-1 Source End Point Identifier, specifying the origin of the packet
inside the Source Process.

ulLen UINT32 12 Packet data length in bytes

ulld UINT32 0..2%2-1 Packet identification as unique number generated by the
source process of the packet

ulSta UINT32 See below.

ulCmd UINT32 Ox1F5E PNS_IF_SEND_ALARM_CNF-command

ulExt UINT32 0 Extension not in use, set to zero for compatibility reasons

ulRout UINT32 X Routing, do not touch

Data | structure PNS_IF_SEND_ALARM_CNF_DATA_T

hAlarmHandle UINT32 The user specific alarm handle.

ulPnio UINT32 PROFINET error code, consists of ErrCode, ErrDecode,
ErrCodel and ErrCode?2. See section “PROFINET Status
Code”.

Table 198: PNS_1F_SEND_ALARM_CNF_T - Send Alarm Confirmation

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 292/390

8 Special Topics
8.1 Behavior under special situations

This section describes the behavior of the stack under some special situations.

8.1.1 Sequence of configuration evaluation

Three ways of configuration of the PROFINET IO-Device stack are available:
SYCON.net Database
netX Configuration Tool (iniBatch Database)
Set Configuration Request packet
Only one type of configuration can be active at a certain time.
These are evaluated at start-up in the following order:
SYCON.net Database
iniBatch Database (via netX Configuration Tool)
Set Configuration Request packet

After a Restart the stack will first search for the SYCON.net Database files (config.-nxd and
nwid.nxd). If these are found, all other configuration methods will not be accepted. If no
SYCON.net Database exists, but an iniBatch Database exists, its configuration will be used and
configuration packets will be not accepted.

If no database is found at all the stack remains unconfigured until the reception of the first
configuration packet.

8.1.2 Configuration Lock
If the configuration of the stack is locked as described in Dual Port Memory Interface Manual
(reference [3]), the following behavior is implemented in the stack:

New Set Configuration Requests are not accepted

Configuration Reload / Channel Init will be rejected

However, PROFINET specific services affecting the configuration are still working as defined by
PROFINET specification. This includes setting IP parameters and NameOfStation by means of
DCP and writing PDEV-Parameters using records.

8.1.3 Setting Parameters by means of DCP

The PROFINET specification defines the Discovery and basic Configuration Protocol (DCP) to
change some basic PROFINET Device Parameters over the bus.

A PROFINET IO-Controller, a PROFINET 10-Supervisor or an Engineering System can easily
change the IP parameters or the NameOfStation of a PROFINET Device at any time. These new
parameters can either be marked to be used temporarily or marked to be stored remanent.

The receipt of such a request is indicated to the user with the Save Station Name Indication, the
Save IP Address Indication or the Reset Factory Settings Indication.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics

293/390

The stack will adapt to these new parameters at runtime. Anyway, as the NameOfStation and the
IP parameters are part of the Stacks configuration, the user application must handle these
parameters properly, if the stack is configured using the Set Configuration Service:

Configuration Method

Parameter Handling

SYCON.net Database

Parameters are stored by stack into non volatile memory.

netX Configuration Tool (iniBatch Database)

Parameters are stored by stack into non volatile memory.

Set Configuration Request packet

User Application shall store NameOfStation and IP
parameters into non-volatile memory. Set Configuration
Service fields shall be initialized from non-volatile memory
on startup.

Table 199: Handling of basic parameters

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 294/390

8.2 Multiple ARs
8.2.1 Ownership

As already written above, the PROFINET Device stack supports multiple ARs at the same time.
This allows different controllers to access different output submodules and same or different input
submodules of one device at the same time. In term of the PROFINET specification this is called
Shared Device and Shared Input. Of course, a Shared Output is not defined as it makes no sense
to access an output submodule from multiple controllers at the same time. In order to solve the
problem of which controller gets the right to write the outputs of a submodule and perform
parameterization, the PROFINET specification v2.3 defines a new state machine, the Ownership-
State machine (OWNSM). Depending on the submodule specific Ownership, the following access
rights are defined:

AR is the owner of the submodule: The submodule puts its input process data to this AR,
takes the output process data from this AR and accepts parameter read and writes on this
AR.

AR is not the owner of the submodule: The submodule puts its input process data to this
AR (Shared Input). The submodule ignores output process data from this AR and rejects
parameter reads and writes on this AR.

The ownership itself is assigned according to the rule “First Come First Serve” e.g. the first AR will
get the ownership of all requested submodules, the second AR will get the ownership of requested
submodules not already owned by the first AR. If the first AR is disconnected, the second AR will
get the ownership of all requested submodules not yet assigned to this AR (This is called a
Release). There is only one exception from this rule: If a Supervisor AR connects, it takes over the
ownership of all requested submodules if the owning ARs allow Ownership Takeover (Depends on
AR Properties in Connect.req of the AR). Furthermore, if a Supervisor AR is active and was not
allowed to take over the ownership of a submodule and the owning AR disconnects, the Supervisor
AR will always get the ownership of the submodule (Supervisor AR has higher Priority than “First
Come First Serve” Principle).

Note:

0 As already written above, the multi AR feature renders the definition of a “communicating
state” ad absurdum. The application usually has no information about which of the
submodules is used by any AR. Therefore it is strongly recommended to cyclically
update the process data from/to the physical submodules, regardless of any
communication state. If the application insists on knowing if a submodule is in data
exchange or not, the IOxS status of the submodule should be examined.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 295/390

8.2.2 Possibilities and Limitations for the Feature Shared Device

Starting with PROFINET 1O Device version V3.9.0.0, the feature Shared Device is extended to up
to 8 IO ARs for netX 51 and netX 100. This feature extension is not supported for netxX 50.

Note: When using PROFINET IRT it is not possible to use Shared Device for IRT.

The netX-based PROFINET IO Device only supports exactly 1 IRT IO AR. Additional RT IO ARs
are possible.

Note: Even if more 10 ARs are enabled only one single 10 Supervisor AR is supported.

Reachable Cycle Time Depending on the Amount of IO ARs
To give the user of the PROFINET 10 Device protocol stack a better understanding of reachable
cycle times for this feature, extensions of this chapter will give some performance indicators.

As the variety of combinations is very large obviously this chapter can not show every possible use
case. Thus only a small subset of possibilities is shown here.

This does neither mean that a not shown combination is not supported nor that it is supported.

Configurations to be used have to be tested by the one combining the netX PROFINET IO Device
with his application.

Note: As each netX chip type has different calculation power this chapter differs the netX chip
type.

For the following tables it is assumed that two 20 byte input submodules and two 20 byte output
submodules are used per IO AR.

Please note, that the amount of submodules influences the reachable cycle time.

netX Amount of ARs | Smalles possible Cycle Time
netX 100 1-2 1ms

3-5 2ms

6-8 4 ms
netx 51 1-2 1ms

34 2ms

5-8 4 ms

Table 200: Smalles possible Cycle Time depending using multiple ARs

GSDML, startup Parameterization and Certification

In any case to pass PROFINET certification it is required that the supported amount of ARs
documented in GSDML file matches to the capabilities of the product. Thus the value in GSDML
(“NumberOfAR") needs to match the configured amount of ARs of the PROFINET protocol stack.

Loadable firmware offers a tag list entry to modify the amount of ARs supported.
Linkable Object Module offers a stack startup parameter (ulMaxAr).

Note: Even if more IO ARs are enabled only one single 10 Supervisor AR is supported.

This is a conflict to GSDML V2.34 which states that the number of supported ARs according to
GSDML shall be supported as type “IO Supervisor AR” or as type “IO Controller AR”. This conflict
will be solved in the an upcoming Protocol stack release.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 296/390

8.3 Asset Management

Asset Management is a new Feature defined by PROFINET specification V2.34. It is used to
provide information about all installed software and hardware versions within the PROFINET
Device itself or accessible via subsequent fieldbusses/networks in case of a gateway or more
complex device (e.g. Robot Unit with internal busses). It will be used by diagnostic tools to show
detailed version information about a device/unit. The functionality uses a globally defined record
object to exchange the information.

Starting with V3.12.0.0 the Hilscher PROFINET Device protocol implementation defines the service
Get Asset Service to retrieve the asset information from the application. The protocol
implementation will collect the data using multiple such services and generate a properly encoded
read record response from this information. This sequence is illustraded in the following image:

Hlsd: Read Asset Management Data)

| 7' Protocol Stack | 7' Apblication

1
I
RPC Read Record Request |
o Get Asset Indication(int16 usEntryNumber)

Get Asset Response(intlé usEntryNumber, AssetData atEntries)

Get Asset Indication(int16 usEntryMumber)

2

L)

I N2 |

Get Asset Response(intlé usEntryMumber, AssetData atEntries

Get AssetIndication(intlé usEntryMumber)

Get Asset Response(intlb usEntryNumber)

RPC Read Record Response

Figure 28: Sequence when asset management data is read

As shown in the image, the protocol implementation will use multiple Get Asset Service to retrieve
the information from the application. When no further asset management data is available, the
application shall return the Get Asset Response without asset management data content. This will
indicate to the protocol implementation that all asset management data has been delivered and the
read response can be generated.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 297/390

8.4 PROFlenergy ASE

Starting with V3.12.0.0 the protocol stack has implemented the PROFlenergy ASE as defined by
PROFINET specification. For that purpose, it maintains an internal database of PE entities. PE
entities are added removed or updated in this database by the application using the corresponding
packet services. The protocol stack generates all PROFINET Alarms associated with these
operations internally. Futhermore the protocol stack implements the PE Filter Data and PE Status
Data records using the information from the database. Read or Write access to the PESAP record
object (Index 0x80AD0) is filtered by the protocol stack using the database. If the database contains
a PE entity associated with the accessed submodule, a regular Read/Write record service is used
to hand over processing of the record object access to the application. If no PE entity is associated
with the accessed submodule, the access is rejected by the protocol stack.

Note: Applications that already have implemented the PROFlenergy profile without using the
PE ASE services need to be modified in order to still support PROFlenergy. Without
application modification the required PROFIlenergy services will no longer be usable
with V3.12.0.0.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 298/390

8.5 Ethernet MAC Addresses

The PROFINET protocol stack requires up to three MAC addresses for operation: One Interface
MAC Address and for each Ethernet port a port MAC address. The MAC addresses are configured
via different paths:

The firmware/protocol stack is provided a single MAC address from the Second Stage Boot
Loader on startup of the firmware. This MAC address is used as interface MAC address. The
remaining MAC addresses are computed from this MAC address.

A security memory chip is attached to the netX. The firmware/protocol stack reads the
interface MAC address from the security memory. The remaining MAC addresses are
computed from this MAC address.

A Flash label is found in the Flash memory chip attached to the netX (netX51 only). The
firmware/protocol stack reads the interface MAC address from the Flash memory. The
remaining MAC addresses are computed from this MAC address.

Finally, before configuring the protocol stack the application can assign custom MAC
addresses. This step is mandatory if the firmware was not able to determine the device’s
MAC address using the methods above. This step can be performed optionally after startup
of the firmware to override any other MAC address settings. In order to assign a MAC
address the rcxX Set MAC_Address_Service and afterwards the
PROFINET_Set Port MAC_Address_Service must be used in exactly this order.

Figure 29 shows the MAC address determination bootup sequence.

Mac Address provided fipm Second Stage Loader?

ory available?

available ™ not available

FIasHaQil found?

{
{
(Read MAC Address from Security Memuryj IJ' yes \
{

v
\ [Read MAC Address from F\ashlabe\]

true
Walid MAC Address?

yes (Wanfor&handle rcX Set Mac Address Serwcej

[Wait for & handle Profinet Set Port MAC Address Senricej

Aﬁ

O]

Figure 29: Sequence of MAC Address determination

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 299/390

8.6 Usage of Linkable Object Module

_) Note:
. This section only applies if the stack is used as Linkable Object Module. If the stack is
used as Loadable Firmware this section can be ignored.

For more details of the configuration, see the example provided on NXLOM CD.

In case of any lack of clarity within this document please refer to the example provided
on NXLOM CD.

If the stack is used as Linkable Object Module, the user has to create its own configuration file
(which among others contains task start-up parameters and hardware resource declarations). The
PROFINET stack itself is started by invoking the function PNS_Stacklnit() from the user
application.

_) Note:

. Since PROFINET Stack Version 3.5.0.0 the PROFINET Stack is started by calling the
function PNS_StackInit(). This function automatically initializes required resources
and launches the affected tasks.

8.6.1 Config.c

The config.c file contains among others the hardware resource declarations and the static task list.

8.6.1.1 Hardware Resources

Besides the standard rcX resources and the user application resources, the following hardware
resources should be declared. These are used by the PROFINET Device stack.

For netX 100 or netX 500

Resource Peripheral Type Peripheral Subtype Instance
Ethernet Physical | RX_PERIPHERAL_TYPE_PHY Oand 1
Interface
xC Units RX_PERIPHERAL_TYPE_XC RX_XC_TYPE_XMACRPU 0, 1 and
3%
xC Units RX_PERIPHERAL_TYPE_XC RX_XC_TYPE_XMACTPU 0, 1 and
3%
xC Units RX_PERIPHERAL_TYPE_XC RX_XC_TYPE_XPEC 0,1and3
Fifo units RX_PERIPHERAL_TYPE_FIFOCHANNEL 0,1and3
Ethernet Driver RX_PERIPHERAL_TYPE_EDD 0
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_msyncO 0
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_msyncl 1
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_msync3 3
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_com0 0
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT coml 1
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT com3 3
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_systime_ns |0

Table 201: Hardware resources used by the PROFINET Device stack for netX 100/500

See also section Disable XMAC3 on page 300.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics

300/390

For netX 50
Resource Peripheral Type Peripheral Subtype Instance
Ethernet Physical | RX_PERIPHERAL_TYPE_PHY Oand 1
Interface
XxC Units RX_PERIPHERAL_TYPE_XC RX_XC_TYPE_XMACRPU Oand 1
xC Units RX_PERIPHERAL_TYPE_XC RX_XC_TYPE_XMACTPU Oand 1
xC Units RX_PERIPHERAL_TYPE_XC RX_XC_TYPE_XPEC Oand 1
Fifo units RX_PERIPHERAL_TYPE_FIFOCHANNEL Oand 1
Ethernet Driver RX_PERIPHERAL_TYPE_EDD 0
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_msync0O 0
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_msyncl 1
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_comO 0
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_coml 1
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_systime_ns |0
Table 202: Hardware resources used by the PROFINET Device stack for netX 50
For netX 51
Resource Peripheral Type Peripheral Subtype Instance
Ethernet Physical | RX_PERIPHERAL_TYPE_PHY Oand 1
Interface
XC Units RX_PERIPHERAL_TYPE_XC RX_XC_TYPE_XMACRPU Oand 1
XxC Units RX_PERIPHERAL_TYPE_XC RX_XC_TYPE_XMACTPU Oand 1
xC Units RX_PERIPHERAL_TYPE_XC RX_XC_TYPE_RPEC Oand 1
xC Units RX_PERIPHERAL_TYPE_XC RX_XC_TYPE_TPEC Oand 1
Fifo units RX_PERIPHERAL_TYPE_FIFOCHANNEL Oand 1
Ethernet Driver RX_PERIPHERAL_TYPE_EDD 0
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_msync0 0
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_msyncl 1
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_comO 0
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NETX_VIC_IRQ_STAT_coml 1
Interrupt RX_PERIPHERAL_TYPE_INTERRUPT SRT_NX51_vic_irq_status_systime_ns 0

Table 203: Hardware resources used by the PROFINET Device stack for netX 51

8.6.1.2

Disable XMAC3

Using netX100 or netX500 it is possible to exclude the XMACRPU3 and XMACTPU3 units from the

PROFINET Device stack hardware list (Table 201), but XPEC3 unit is still in use. XMACRPU3 and
XMACTPU3 can be used for another purpose.

Without the XMACRPU3 and XMACTPUS3 units the PROFINET stack has the following restrictions:

disabled generation of the external SYNC signals on SyncO and Syncl pins that is described
in reference [6],
it is not possible to build synchronous application described in reference [6] because of
disabling of synchronization interface,

certification for “Conformance Class C” is not possible because there is no external SYNC
signal to check the synchronization (no sync pin available), but IRT mode is still available.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Special Topics 301/390

To exclude the XMACRPU3 and XMACTPU3 units from usage of the PROFINET Device stack do
not define their names in the EDD-parameter list RX_EDD_PARAMETERS T, just initialize to
NULL:

STATIC RX_EDD_PARAMETERS_T g_atEddParam[]=

{

{ RX_EDD_PARAM_XPEC_NAME, "PNS_XPEC", 0 }, /* XPECO */

{ RX_EDD_PARAM_XMAC_RPU_NAME, "PNS_XMACRPU", 0 }, /* XMACO_RPU */

{ RX_EDD_PARAM_XMAC_TPU NAME, "PNS_XMACTPU", O }, /* XMACO_TPU */

{ RX_EDD_PARAM_XPEC_NAME, "PNS_XPEC", 1}, /* XPEC1 */

{ RX_EDD_PARAM_XMAC1_RPU_NAME, "PNS_XMACRPU", 1 }, /* XMAC1_TPU */

{ RX_EDD_PARAM_XMAC1 TPU NAME, "PNS_XMACTPU", 1 }, /* XMAC1_RPU */

{ RX_EDD_PARAM_XPEC3_NAME, "PNS_XPEC", 3}, /* XPEC3 */

{ RX_EDD_PARAM_XMAC3 RPU_NAME, NULL, 3 }, /* don”t use XMAC3_RPU for EDD */

{ RX_EDD_PARAM_XMAC3 TPU NAME, NULL, 3 }, /* don”t use XMAC3_TPU for EDD */
}:

STATIC RX_EDD _SET T g_atEdd[] = {
{{PNS_EDD_IDENTIFY_NAME ,RX_PERIPHERAL_TYPE_EDD,0}, /* Ethernet Device Driver */

0, /* use EddO */
"PROFINET Switch-Cut-Through™, /* NIC name */
RX_EDD_MODE_DEFAULT,
FALSE,
g_atEddParam,
&trEddHalPND

)

8.6.1.3 Systime Unit

The PROFINET Device stack uses the SysTime unit (namely the SysTime-compare interrupt
SRT_NETX_VIC_IRQ_STAT_systime_ns) for internal RT scheduling. The stack reconfigures the
SysTime unit differently compared to default rcX, therefore the rcX function delivers following
information:

SYSTIME_TIMESTAMP_T timestamp;
Drv_SysTimeGetTime(×tamp);

Timestamp.ulTimeNs - lower 4 bytes of the system time in step of 10 ns
Timestamp. ulTimeS - higher 4 bytes of the system time in step of 10 ns

So the “timestamp* is a 64 bit value of system time in step of 10 ns

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 302/390

8.6.1.4 Static Task List

Since PROFINET Stack version 3.5, the static task list should contain the Timer Task, The TCP/IP
Task and the User Application Tasks:
/* Stack-sizes for the static tasks */

#define TSK_STACK SIZE_TLR_TIMER 512 /* Memory assignement for the TimerTask */
#define TSK_STACK SIZE_TCP_TASK 1024 /* Stack Size in multiples of UINTs */
#define TSK_STACK SI1ZE_PCK_DEMO 2048 /* Stack Size in multiples of UINTs */

/* Stack for the "TLR TIMER"™ task /
STATIC UINT auTskStack Tlr_Timer[TSK_STACK_SIZE TLR_TIMER];

/* Stack for the "TCP_UDP™ task */
STATIC UINT auTskStack_Tcp_Task[TSK_STACK_SIZE_TCP_TASK];

/* Stack for the "Packet APl Demo' task */
STATIC UINT auTskStack Pck_API_Demo[TSK_STACK_SIZE_PCK_DEMO];

RX_STATIC_TASK T g_atStaticTasks[] = {

{"TIrTimer", /* ldentification */

TSK_PRIO_12, TSK_TOK 12, /* Priority Token ID */

0, /* Instance 0 */

&auTskStack Tlr_Timer[0], /* Pointer to Stack */
TSK_STACK_SIZE_TLR_TIMER, /* Size of Task Stack */

0,

RX_TASK_AUTO_START, /* Start task automatically */
(VOID*)TaskEnter_TIlrTimer, /* Task main() Function */
(VOID*)TaskExit_TIrTimer, /* Task leave callback */
(UINT32)&g_tTIrTimerPrm, /* Startup Parameter */
{0,0,0,0,0,0,0,0} /* Reserved */

3

{""TCP_UDP", /* ldentification */
TSK_PRIO_30, TSK_TOK 30, /* Priority and Token ID */
0, /* Instance 0 */
&auTskStack Tcp_Task[0], /* Pointer to Stack */
TSK_STACK_SIZE_TCP_TASK, /* Size of Task Stack */

o,

RX_TASK_AUTO_START, /* Start task automatically */
(void FAR*)TaskEnter_TcpipTcpTask, /* Task main() Function */
NULL, /* Task leave callback */
(UINT32)&g_tTcplpPrm, /* Startup Parameter */
{0,0,0,0,0,0,0,0%} /* Reserved */

3.

/* User AP-Task for acyclical and low-priority services */

{""APP_LOW", /* ldentification */
TSK_PRIO_40, TSK_TOK 40, /* Priority and Token ID */
0, /* Instance to 0 */

& auTskStack_Pck_API_Demo[0], /* Pointer to Stack */
TSK_STACK_SI1ZE_PCK_DEMO, /* Size of Task Stack */
0,
RX_TASK_AUTO_START, /* Start task automatically */
(void FAR*)TaskEnter_UserAp, /* Task main() Function */
NULL, /* Task leave callback */
0, /* Startup Parameter */
{0,0,0,0,0,0,0,0} /* Reserved */
3.

The startup parameters of the Timer Task and TCP/IP Task shall be set as follows (this depends
on the used version as well):

STATIC CONST TLR_TIMER_STARTUPPARAMETER_T g_tTIrTimerPrm =
TLR_TASK TIMER, /* ulTaskldentifier */
1, /* ulParamVersion */
160, /* application timer resources */
2, /* interrupt timer resources */
2 /* retry packet resources */
};

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 303/390
STATIC CONST TCPIP_TCP_TASK_STARTUPPARAMETER T g_tTcplpPrm =

{
TLR_TASK TCPUDP, /* ulTaskldentifier */
TCPIP_STARTUPPARAMETER_VERSION_6, /* ulParamVersion */
TCPIP_SRT_QUE ELEM _CNT_AP_DEFAULT, /* ulQueElemCntAp */
TCPIP_SRT POOL_ELEM CNT DEFAULT, /* ulPoolElemCnt */
TCPIP_SRT_FLAG_FAST START, /* ulStartFlags */
TCPIP_SRT _TCP_CYCLE_EVENT DEFAULT, /* ulTcpCycleEvent */
TCPIP_SRT_QUE FREE ELEM_CNT_DEFAULT, /* ulQueFreeElemCnt */
32, /* ulSocketMaxCnt */
TCPIP_SRT_ARP_CACHE_ SIZE DEFAULT, /* ulArpCacheSize */
PNS _EDD IDENTIFY_NAME, /* pszEddName */
TCPIP_SRT EDD QUE_POOL_ELEM CNT DEFAULT, /* ulEddQuePoolElemCnt */
TCPIP_SRT_EDD_OUT_BUF_MAX_CNT_DEFAULT, /* ulEddOutBufMaxCnt */
NULL, /* Pointer to EthIntf Config */
60, /* ARP cache timeout in seconds */
NULL,
-ulNetLoadMaxFramesPerTick = TCPIP_SRT NETLOAD MAXFRAMESPERTICK_ DEFAULT,
-ulNetLoadMaxPendingARP = TCPIP_SRT_NETLOAD_ MAXPENDING_ARP_DEFAULT,
-ullNetLoadMaxPendingMCastARP = TCPIP_SRT NETLOAD MAXPENDING_MCASTARP_DEFAULT,
-ulNetLoadMaxPendinglP = TCPIP_SRT NETLOAD MAXPENDING_IP_DEFAULT,
-ulNetLoadMaxPendingMCastIP = TCPIP_SRT NETLOAD_ MAXPENDING MCASTIP_ DEFAULT,

¥

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 304/390

8.6.2 PNS_Stacklnit()

In order to start the PROFINET Device stack, the user application shall invoke the function
PNS_StacklInit(). The function will setup the resources needed by the stack and launch all required
tasks. The function has to be provided with parameters describing the hardware resources:

/* PROFINET Device stack - configuration parameters */
PROFINET_I10DEVICE_STARTUPPARAMETER T tPrm;

/* PROFINET Device stack - configured task resources */
PROFINET_I10DEVICE_TASK RESOURCES_T* ptRsc;

eRslt= PNS_StackInit(&tPNSParam, &ptPNSRsc);

The configuration structure PROFINET _IODEVICE_STARTUPPARAMETER_ T of the PROFINET
Device stack has following fields:

ulParamVersion

This value needs to be adapted to the stack version used, different versions of parameters
will not be accepted by the Stackinit function.

ullnstance

Used as a handle variable for the interrupts described above and EDD.
ulFlags

Defines the following options:

Option Value Description
PROFINET_IODEVICE_STARTUP_FLAG_USE_IRT 0x0001 | Obsolete, setto 0
PROFINET_IODEVICE_STARTUP_FLAG_SYNC_APPL_WIT |0x0002 |Obsolete, setto 0

H_FIQ

PROFINET_IODEVICE_STARTUP_FLAG_SYNC_APPL_WIT |0x0004 |Obsolete, setto 0

H_IRQ

PROFINET_IODEVICE_STARTUP_FLAG_FIBER_OPTIC_H |0x0008 | Obsolete, use values 0x0100 or/and
w 0x0200 instead
PROFINET_IODEVICE_STARTUP_FLAG_DISALLOW_I0 0x0010 | Shall be set if IO-Supervisor AR shall
_SUPERVOR_AR not be supported by the stack
PROFINET_IODEVICE_STARTUP_FLAG_USE_LINKLOCAL |0x0020 | Set this flag to configure link local IP
_IP address (generated from MAC

address) instead of zero IP address
-—- 0x0040 | Reserved

-—- 0x0080 | Reserved
PROFINET_IODEVICE_STARTUP_FLAG_FIBER_OPTIC_P |0x0100 | Shall be set, if hardware has fiber

ORTO optic on portl
PROFINET_IODEVICE_STARTUP_FLAG_FIBER_OPTIC_P |0x0200 | Shall be set, if hardware has fiber
ORT1 optic on port2

PROFINET_IODEVICE_STARTUP_FLAG_IM5_SUPPORTED | 0x0400 | Shall be set to support I&M5 (used for
Hilscher's internal purposes)

PROFINET_I10DEVICE_STARTUP_FLAG_FODMI_TASK_DI |0x0800 | Shall be set to disable the fiber optic
SABLED service task (FODMI)
PROFINET_IODEVICE_STARTUP_FLAG_DISALLOW_SRAR |0x1000 | Shall be set if system redundancy AR
shall not be supported by the stack

PROFINET_IODEVICE_STARTUP_FLAG_DISALLOW_IRT |0x2000 | Shall be setif RT Class3 (IRT) AR
shall not be supported by the stack

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 305/390

ulMinDevicelnterval

This is a GSDML-file parameter representing the minimum interval time for sending cyclic 10
data.

ulMaxAr

This parameter represents the maximal count of controllers can be connected to the device.
See section 8.2 for details.

pszEddName

The name of the EDD shall be specified in pszEddName. This name is used by other tasks,
too, and shall always have the same value. The default value is “ETHERNET".

pszPhyOName

pszPhylName

Obsolete parameters, not used any more.
pszlrgRTSchedName

Specify the name of the RT Scheduler Interrupt here. The interrupt with the corresponding
name shall be defined in the configuration file, it is the SysTime-compare interrupt
SRT_NETX_VIC_IRQ_STAT_systime_ns.

pfnFodmiTaskInitFn

Pointer to the startup function of the fiber optic service task. Shall be initialized to
“FODMITask_Init’ if flags

PROFINET_I0DEVICE_STARTUP_FLAG_FIBER_OPTIC_PORTO or/and
PROFINET_IODEVICE_STARTUP_FLAG_FIBER_OPTIC_PORT1 is/are set.

pvFodmiTaskInitPrm

Pointer to the initialization parameters for fiber optic service task. Shall be initialized with
address of the startup parameters for FODMI-Task FODMI_TASK_INIT_PRM_T if flags
PROFINET_I10DEVICE_STARTUP_FLAG_FIBER_OPTIC_PORTO or/and
PROFINET_I10DEVICE_STARTUP_FLAG_FIBER_OPTIC_PORT1 is/are set.

tTaskCmdev, tTaskRtc, tTaskRta, tTaskLldp, tTaskMibDB, tTaskPnsif, tTaskRpc,
tTaskSnmp, tTaskFodmi

Configurations of the priorities for corresponding tasks
patPNSModules

Reserved, set to NULL.

usMauTypePort0, usMauTypePortl

MAU type of Fiber Optic device, shall be used if hardware has fiber optic (flags
PROFINET_IODEVICE_STARTUP_FLAG_FIBER_OPTIC_PORTO or/and
PROFINET_I10DEVICE_STARTUP_FLAG_FIBER_OPTIC_PORT1 set). If set to “0” the default
MAU type "100BasePXFD" is used.

structure tSNMPdatabase

Used to add custom MIB variables to the SNMP-database. It is a rarely used feature for
customer applications inasmuch as the PROFINET stack takes care about all required
SNMP-variables. For more information see reference [7].

.pvCustomGroups

Pointer to the array of custom MIB groups. It is the same parameter as
MIB_DATABASE_STARTUPPARAMETER_V3_T: :ptCustomGroups for SNMP-

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 306/390

database task. Set to ”NULL™ if an application does not support custom SNMP
variables

.ulCustomGroupsCount

Number of groups in the array of custom MIB groups. It is the same parameter as
MIB_DATABASE STARTUPPARAMETER V3 T::ulCustomGroupsCount for SNMP-
database task. Set to ’0”” if an application does not support custom SNMP variables

ulActivePROFINETPorts

Specify the number of Ethernet Ports here. Typically, this value is 2 for all netX based
products. Definition of ulActivePROFINETPorts = 1 means a single port PROFINET
device: logical an Ethernet port 1 is the active PROFINET port ; information about port 2 will
be not delivered via common services like SNMP and RPC (it is still usable for
communication, physical is not deactivated).

Common implementation of a PROFINET 10-device with 2 Ethernet shall set this parameter
to 2.

ulActiveLLDPPorts

This parameter defines amount of active LLDP Ethernet ports. Parameterization
ulActivelLLDPPorts = 1 forces an activity of LLDP service only on the physical Ethernet
port 1.

The combination of parameter

"ulActivePROFINETPorts = 1" and "ulActivelLLDPPorts = 2"

is allowed.

usOEMVendorID
This field is relevant only in case I&MS5 is enabled. In this case the value of this field will be
used inside DCP ldentify Response frames as content for the OEMVendorBlock. Set to O if
I&MS is not used.
usOEMDevicelD
This field is relevant only in case I&MS5 is enabled. In this case the value of this field will be

used inside DCP Identify Response frames as content for the OEMVendorBlock. Set to O if
I&MS5 is not used.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics

307/390

Configuration Example (not valid for a fiber optic device):

PROFINET_I10DEVICE_STARTUPPARAMETER_T tPNSParam /* PNS Stack Parameters */
PROFINET_IODEVICE_TASK RESOURCES T *ptPNSRsc /* Pointer to PNS Resources */
TLR_HANDLE hQuePnslIf; /* PNS-IF Task Queue */

/* common parameters */
tPnsParam.ulParamVersion

tPNSParam.ul Instance = 0;
tPNSParam.ulFlags = 0;
tPNSParam.ulMinDevicelnterval = 32; /* 1ms */
tPNSParam.ulMaxAr = 2;
tPNSParam.pszEddName = “ETHERNET”;
tPNSParam.pszPhyOName = NULL;
tPNSParam.pszPhylName = NULL;
tPNSParam.pszlrgRTSchedName = "PNS_RT_IRQ";
tPNSParam.pfnFodmiTaskInitFn = NULL;
tPNSParam. pvFodmiTaskInitPrm = NULL;

/* priorities of all tasks, started by PROFINET */

tPNSParam.tTaskCmdev = {NULL, "PNIO_CMDEV", TSK_PRIO_18},
tPNSParam. tTaskRtc {NULL, "PNIO_RTC", TSK_PRI0_4},
tPNSParam. tTaskRta {NULL, "PNIO_RTA", TSK_PRIO_14},

tPNSParam.tTaskLldp
tPNSParam.tTaskMibDB

{NULL, "LLDP-Task™, TSK_PR10_13},
{NULL, "Mib-Database', TSK_PRIO_31},

tPNSParam.tTaskPnsift = {NULL, "PNS_IF", TSK_PRI10_21%,
tPNSParam. tTaskRpc {NULL, "RPC", TSK_PRI10_16%,
tPNSParam.tTaskSnmp {NULL, "SNMP-Server', TSK PRIO_32},
tPNSParam. tTaskFodmi {NULL, "‘FODMI", TSK_PRI10_51}%,
/* fixed modules */

tPNSParam.patPNSModules = NULL;

/* MAU types are applied for fiber optic only */
tPNSParam.usMauTypePortO = 0;
tPNSParam.usMauTypePortl = 0;

/* no custom SNMP variables */
tPNSParam.tSNMPdatabase . pvCustomGroups = NULL;
tPNSParam. tSNMPdatabase.ulCustomGroupsCount = 0;

/* 2-Ethernet port has a device */
tPNSParam.ulActivePROFINETPorts = 2;

/* LLDP service is active on both Ethernet ports */
tPNSParam.ulActivelLLDPPorts = 2;

/* now start the stack */
if (TLR_S OK == PNS_Stacklnit(&tPNSParam, &ptPNSRsc))

hQuePnslIf = ptPNSRsc->hQuePnsif;
}

PROFINET_10DEVICE_STARTUPPARAMETER_VERSION_V6

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Special Topics

308/390

8.6.3

Task Priorities

It is recommended to use the following task priorities as can be seen in the example configuration

file:

Note:

Any change in the priority order of the tasks may lead to problems which will be
difficult to detect. It is recommended that each application task shall have a lower
priority than the PNS_IF-Task

Task Name Priority Description

RX_TIMER TSK_PRIO_DEF_RX_TIMER rcX Timer interrupt task priority*

PND_HAL_RT TSK_PRIO_3 PND Switch RT task

PNIO_RTC TSK_PRIO 4 RTC task

RX_TIMER TSK_PRIO_5* rcX Timer interrupt task priority*

PND_HAL_NWC TSK_PRIO_7 PND Switch NWC task

APP_HI TSK_PRIO_8 Application task, handles cyclical data (see 8.7.3.2)
PND_HAL_NRT TSK_PRIO_11 PND Switch NRT task

TIrTimer TSK_PRIO_12 TLR Timer Task

LLDP-Task TSK_PRIO_13 LLDP task

PNIO_RTA TSK_PRIO_14 RTA task

RPC TSK_PRIO_16 RPC task

PNIO_CMDEV TSK_PRIO_18 CMDEV task

PNS_IF TSK_PRIO_21 PROFINET Stack Interface task

TCP_UDP TSK_PRIO_30 TCP/IP task

Mib-Database TSK_PRIO_31 SNMP MIB task

SNMP-Server TSK_PRIO_32 SNMP-Task

APP_LOW TSK_PRIO_40 Application task, handles acyclical services (see 8.7.3.2)
FODMI TSK_PRIO_51 Fiber Optic Diagnostic Media Interface

Table 204: Overview about the recommended Task Priorities (*priority of the RX_TIMER should be set to TSK_PRIO_5
only for Isochronous Applications with fast cycles 250us, see also [8.9])

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Special Topics 309/390

8.6.4 Fiber optic device

Using Linkable Object Module, it is possible to build a device that uses a fiber optic medium.

8.64.1 Fiber optic configuration

As explained above the PROFINET stack starts, if a user application invokes the function
PNS_Stackinit() with configuration parameters. They include a pointer to a configuration structure
FODMI_TASK_INIT_PRM_T for the fiber optic service task FODMI. This task operates the link
LEDs and link activity LEDs for fiber optic ports and reads diagnostic data from the fiber optic
transceivers via 12C bus.

Configuration structure FODMI_TASK_INIT_PRM_T has following fields:
ulCyclicDiagnosis_ms
This is a period for sending diagnosis information, evaluated in milliseconds (use 1000ms).
pszLEDPortlLink
The name of the LED for link (up/down) signaling of the port 1.
pszLEDPort1Act
The name of the LED for link activity signaling of the port 1.
pszLEDPort2Link
The name of the LED for link (up/down) signaling of the port 2.
pszLEDPort2Act
The name of the LED for link activity signaling of the port 2.
ulCyclicLEDActState_ms
This is a period for checking the activity of the fiber optic ports, evaluated in milliseconds
(use 250ms).
bSDA1Pinldx (used only for netX50)
MMIO pin number on the netX for 12C serial data line (SDA) to connect the fiber optic
transceiver for the port 1.
bSDAZ2Pinldx (used only for netX50)
MMIO pin number on the netX for 12C serial data line (SDA) to connect the fiber optic
transceiver for the port 2.
bSCLPinldx (used only for netX50)
MMIO pin number on the netX for 12C serial clock line (SCL) commonly used for fiber optic
transceiver s for both ports.
ulPintype (used only for netX500 and netX100)
Pin to switch between fiber optic transceivers on portl and port 2.

Type of the switch-pin. Allowed values:

TAG_FIBER_OPTIC_IF_DMI_PINTYPE_NONE
TAG_FIBER_OPTIC_IF_DMI_PINTYPE_GPI0
TAG_FIBER_OPTIC_IF_DMI_PINTYPE_PIO

(HIFPIO used if uPin greater than 32)

0 /* not used */
1 /* GPIO =/
2 /* PIO or HIFPIO */

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 310/390

uPin (used only for netX500 and netX100)

Number of the switch-pin.

Allowed values:

0 - 15 if ulPintype=TAG_FIBER_OPTIC_IF_DMI_PINTYPE_GPIO

0 -84 if ulPintype=TAG_FIBER_OPTIC_IF_DMI_PINTYPE_PIO
fPinInvert (used only for netX500 and netX100)

Set to 1 to invert the signal of the switch-pin. Possible values 0 or 1.
pszPnslfQueName (not used)

Set to NULL.

pszPioGpioHifPioPinldentifyName (used only for netX500 and netX100)
Name of GPIO, PIO or HIFPIO used for switch-pin to identify (depends on ulPintype)

Note:
Because of differences in the netX chips the fields bSDA1Pinldx,
bSDA2Pinldx, bSCLPinldx are evaluated only for netX50 but the fields
ulPintype, uPin, fPinlInvert - for netX500 and netX100.

The netX50 has only one 12C channel and a flexible MMIO matrix that allows
to connect the fiber optic transceivers (I12C bus) to any MMIO pin. The MMIO
matrix is used to switch the 12C bus (exactly pin 12C_SDA) between two fiber
optic transceivers (the clock pin 12C_SCL is common for both transceivers).
The FODMI task does configure of MMIO martix and switch between SDA
pins on its own according to the fields bSDA1Pinldx, bSDA2Pinldx and
bSCLPinldx.

Be sure to select the fiber optic type for the PHY conection in the “IO Config
Register”.

The netX500 and netX100 have only one 12C channel and fixed pins for 12C
bus. Therefore the hardware design (schematic) has to implement a switch of
the 12C bus between two fiber optic transceivers. The switch-pin will control
this switch, it can be configured on any CPIO, PIO or HIFPIO using fields
ulPintype and uPin.

Be sure to select the fiber optic type for the PHY conection in the “lIO Config
Register”.
The netX51 has two 12C channels and a flexible MMIO matrix that allows to

connect the fiber optic transceivers to any MMIO pin. For each fiber optic
transceiver is used own I12C channel.

The FODMI task does not configure MMIO matrix, please configure MMIO
matrix for all used 12C channels (ports) before starting the stack.

Select position A or B for fiber optic PHYO or PHY1 in the “IO Config
Register”, see also the pinning table of the netX51.

Please refer to the “Design-In Guide” of used netX chip for layout and wiring and
to the configuration examples shown below

For a fiber optic device all parameters for the FODMI task should be set, flags — which port is for
fiber optic and MAU types for these ports.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 311/390

The following examples show the fiber optic specific configuration for different netX chips and
different number of fiber optic ports.

Example 1: chip type — netX50, fiber optic ports — port 1 and port 2, MAU types — default for both
ports, 12C bus connected to the MMIO matrix, MMIO pin number 21 used for 12C-clock wire, MMIO
pin number 2 for 12C-SDA wire of the port 1 and MMIO pin number 3 for I2C-SDA wire of the port 2
int main(void)

{

/* before the operating system starts */
volatile unsigned long* pullAccessKey =

(volatile unsigned long*) NETX_ 10 _CFG_ACCESS KEY;
volatile unsigned long* pullOConfig = (volatile unsigned long*)NETX 10 _CFG;

unsigned long val = *pullOConfig;

/* allow internal connection of the i2c module to MMIO matrix */
Val |= MSK _NETX 10 _CFG_sel_i2c_mmio;

/* Select the fiber optic type for the PHYO/1 conection */
val |= (MSK_NETX 10 _CFG_sel foO | MSK_NETX_ 10 _CFG _sel _fol);

/* unlock the netX access-key mechanism and set the values */
*pulAccessKey = *pulAccessKey;
*pul10Config val;

3
FODMI_TASK_INIT_PRM_T g_tFodmiInitPrm =

-ulCyclicDiagnosis_ms = 1000,

-pszLEDPortlLink = "POF_PORTOLINK",

-pszLEDPortlAct = "POF_PORTOACT",

-pszLEDPort2Link = "POF_PORT1LINK",

-pszLEDPort2Act = "POF_PORT1ACT",
-ulCyclicLEDActState ms = 250,

-bSDA1Pinldx =2, /* MMIO2 1is SDA for port 1 */
-bSDA2Pinldx =3, /* MMIO3 1is SDA for port 2 */
-bSCLPinlIdx = 21, /* MMIO21 is SCL for clock */
-ulPintype = TAG_FIBER_OPTIC_IF_DMI_PINTYPE_NONE,
-UPIN =0, /* not used */

-fPinlnvert =0, /* not used */
-pszPnslfQueName = NULL,

-pszPioGpioHifPioPinldentifyName NULL, /* not used */

};

PROFINET_I10DEVICE_STARTUPPARAMETER_T tPNSParam /* PNS Stack Parameters */

tPNSParam.ulFlags = PROFINET_IODEVICE_STARTUP_FLAG_FIBER_OPTIC_PORTO|
PROFINET_IODEVICE_STARTUP_FLAG _FIBER_OPTIC_PORT1;

tPNSParam.pfnFodmiTaskInitFn = (FN_FODMI_TASK INIT) FODMITask_ Init;

tPNSParam. pvFodmiTaskInitPrm= &g tFodmilnitPrm;

tPNSParam.usMauTypePortO

tPNSParam.usMauTypePortl

/* now start the stack */

0; /* default MAU type: polymer optical fiber */
0; /* default MAU type: polymer optical fiber */

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 312/390
if (TLR_S OK == PNS_Stacklnit(&tPNSParam, &ptPNSRsc))

hQuePnslIf = ptPNSRsc->hQuePnsif;
}
All used LEDs should be configured in config.c (RX_LED_SET_T). The FODMI task uses their
names to identify them in runtime. It applies to the pszPioGpioHifPioPinldentifyName also.

Example 2: chip type — netX100, fiber optic ports — port 1 and port 2, MAU types —
“100BaseFXFD” for both ports. GPIO number 7 used to switch between fiber optic transceivers
int main(void)

{

/* before the operating system starts */
volatile unsigned long* pulAccessKey =

(volatile unsigned long*) NETX 10 _CFG_ACCESS KEY;
volatile unsigned long* pullOConfig = (volatile unsigned long*)NETX 10 _CFG;

unsigned long val = *pullOConfig;

/* Select the fiber optic type for the PHYO/1 conection */
val |= (MSK_NETX 10 _CFG_sel foO | MSK_NETX_ 10 _CFG _sel _fol);

/* unlock the netX access-key mechanism and set the values */

*pulAccessKey = *pulAccessKey;
*pull0Config = val;

3
FODMI_TASK_INIT_PRM_T g_tFodmiInitPrm =

-ulCyclicDiagnosis_ms = 1000,

-pszLEDPortilLink = "POF_PORTOLINK",
-pszLEDPortilAct = "POF_PORTOACT",
-pszLEDPort2Link = "POF_PORT1LINK",
-pszLEDPort2Act = "POF_PORT1ACT",
-ulCyclicLEDActState ms = 250,

-bSDA1Pinldx =0, /* not used */
-bSDA2Pinldx =0, /* not used */
-bSCLPinldx =0, /* not used */
-ulPintype = TAG_FIBER_OPTIC_IF _DMI_PINTYPE_GPIO,
-UPiIn =7, /* GPIO 7 */
-fPinlnvert =0, /* not invert */
-pszPnslIfQueName = NULL,
-pszPioGpioHifPioPinldentifyName = "GPIOFODMI™,

};

PROFINET_I0ODEVICE_STARTUPPARAMETER_T tPNSParam; /* PNS Stack Parameters */

PROFINET_I10DEVICE_STARTUP_FLAG_FIBER_OPTIC_PORTO]
PROFINET_IODEVICE_STARTUP_FLAG_FIBER_OPTIC_PORT1;

tPNSParam.ulFlags

tPNSParam.pfnFodmiTaskInitFn
tPNSParam. pvFodmiTaskInitPrm
PNSParam.usMauTypePort0O 0x12; /* MAU type: glas optical fiber */
tPNSParam.usMauTypePortl = 0x12; /* MAU type: glas optical fiber */

(FN_FODMI_TASK_INIT) FODMITask_Init;
&g _tFodmiInitPrm;

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 313/390

Example 3: chip type — netX50, fiber optic port — port 1, MAU type — “100BaseFXFD” for port 1,
I12C bus connected to the MMIO matrix, MMIO pin number 21 used for 12C-clock wire and MMIO
pin number 2 for I2C-SDA wire of the port 1. The second port is connected with twisted pair

int main(void)

{

/* before the operating system starts */
volatile unsigned long* pulAccessKey =

(volatile unsigned long*) NETX_ 10 _CFG_ACCESS KEY;
volatile unsigned long* pullOConfig = (volatile unsigned long*)NETX 10 _CFG;

unsigned long val = *pullOConfig;

/* allow internal connection of the i2c module to MMIO matrix */
Val |= MSK NETX 10 _CFG_sel _i2c_mmio;

/* Select the fiber optic type for the PHYO conection */
val |= (MSK_NETX_10_CFG_sel_f00);

/* unlock the netX access-key mechanism and set the values */

*pulAccesskKey = *pulAccessKey;
*pull0Config = val;

3
FODMI_TASK_INIT_PRM_T g_tFodmiInitPrm =

-ulCyclicDiagnosis_ms 1000,

-pszLEDPortilLink = "POF_PORTOLINK",

-pszLEDPortlAct = "POF_PORTOACT",

-pszLEDPort2Link =", /* not used */

-pszLEDPort2Act = ", /* not used */
-ulCyclicLEDActState ms = 250,

-bSDA1Pinldx =2, /* MMIO2 1is SDA for port 1 */
-bSDA2Pinldx =0, /* not used */

-bSCLPinldx =21, /* MMIO21 is SCL for clock */
-ulPintype = TAG_FIBER_OPTIC_IF_DMI_PINTYPE_NONE,
-UPIN =0, /* not used */

-fPinlnvert =0, /* not used */
-pszPnslfQueName = NULL,

-pszPioGpioHifPioPinldentifyName

NULL, /* not used */};

PROFINET_I0ODEVICE_STARTUPPARAMETER_T tPNSParam; /* PNS Stack Parameters */

tPNSParam.ulFlags = PROFINET_IODEVICE_STARTUP_FLAG_FIBER_OPTIC_PORTO;
tPNSParam.pfnFodmiTaskInitFn = (FN_FODMI_TASK INIT) FODMITask Init;

tPNSParam. pvFodmiTaskInitPrm= &g tFodmilnitPrm;

tPNSParam.usMauTypePortO
tPNSParam.usMauTypePortl

0x12; /* MAU type: glas optical fiber */
0; /* not used */

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics

Example 4: chip type — netX51, fiber optic ports — port 1 and port 2, MAU types — “100BaseFXFD”
for both ports. 12C buses are connected to the MMIO matrix. FODMI task does use the 12CO0 bus to
service the port 1 using MMIO pin number 2 for 12C0_SCL wire and MMIO pin number 3 for
12C0_SDA wire, and does use the 12C1 bus to service the port 2 using MMIO pin number 9 for

[2C1_SCL wire and MMIO pin number 8 for 12C1_SDA
int main(void)

{

}

unsigned long val;
volatile unsigned long* pulAccessKey =
(volatile unsigned long*) Adr_NX51 asic_ctrl_access key;
volatile unsigned long* pullOConfig =
(volatile unsigned long*) Adr_NX51 io_config;
volatile unsigned long* pulMMIOConfig =
(volatile unsigned long*) NX51 NETX_ MMIO_CTRL_AREA;

/* before the operating system starts */

/* configure MMIO matrix for both 12C channels used by FODMI task (2 fiber
optic ports) */

/* unlock the netX access-key mechanism and set the values */
*pulAccessKey = *pulAccessKey;

/* set MMIO pin number 2 for 12CO_SCL wire */
pulMMIOConfig[2] = MMIO_CONFIG_12CO_SCL_MMIO;

*pulAccessKey = *pulAccessKey;
pulMMIOConfig[3] = MMIO_CONFIG_12CO_SDA_MMIO;

*pulAccesskKey = *pulAccessKey;
pulMMIOConfig[9] = MMIO_CONFIG_I12C1_SCL;

*pulAccessKey = *pulAccessKey;
pulMMIOConfig[8] = MMIO_CONFIG_I12C1_SDA;

/* prevent activation of fiber optics on both positions A and B */

val = *pullOConfig;

val &= ~(MSK _NX51 1o _config _sel fo0 a | MSK _NX51 io _config_sel foO_ b |
MSK_NX51 i1o_config _sel fol a | MSK NX51 io_config _sel fol b);

/* Select position A for conection of the fiber optic PHYO and PHY1 */
val |= (MSK _NX51 1o _config sel fo0 a | MSK NX51 io _config_sel fol a);

/* allow internal connection of the i2c module to MMIO matrix */
Val |= MSK _NETX 10 _CFG_sel_i2c_mmio;

/* unlock the netX access-key mechanism and set the values */
*pulAccesskKey = *pulAccessKey;
*pul 10Config val ;

FODMI_TASK_INIT_PRM_T g_tFodmiInitPrm =

1000,
""POF_PORTOLINK",
""POF_PORTOACT",

-ulCyclicDiagnosis_ms
-pszLEDPortlLink
-pszLEDPortlAct

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

314/390

© Hilscher, 2006-2017

Special Topics 315/390

-pszLEDPort2Link = "POF_PORT1LINK",
-pszLEDPort2Act = "POF_PORT1ACT",
-ulCyclicLEDActState ms = 250,

-bSDA1PiInldx =0, /* not used */
-bSDA2Pinldx =0, /* not used */
-bSCLPinldx =0, /* not used */
-ulPintype =0, /* not used */
-UPInN =0, /* not used */
-fPinlnvert =0, /* not used */
-pszPnslfQueName = NULL,

-pszPioGpioHifPioPinldentifyName NULL, /* not used */

PROFINET_I0ODEVICE_STARTUPPARAMETER_T tPNSParam /* PNS Stack Parameters */

tPNSParam.ulFlags = PROFINET_IODEVICE_STARTUP_FLAG_FIBER_OPTIC_PORTO]|
PROFINET_10DEVICE_STARTUP_FLAG_FIBER_OPTIC_PORT1;

tPNSParam.pfnFodmiTaskInitFn = (FN_FODMI_TASK INIT) FODMITask Init;

tPNSParam. pvFodmiTaskInitPrm= &g tFodmilnitPrm;

tPNSParam.usMauTypePortO

tPNSParam.usMauTypePortl

0x12; /* MAU type: glas optical fiber */
0x12; /* MAU type: glas optical fiber */

/* now start the stack */
if (TLR_S OK == PNS_Stacklnit(&tPNSParam, &ptPNSRsc))

hQuePnslIf = ptPNSRsc->hQuePnsif;
}

8.6.4.2 Medium Attachment Unit for Fiber Optic

The fiber optic device can differentiate between following types of the Medium Attachment Units
(MAU):

MAU Type Value Description
100BaseFXFD 0x12 Used transceiver for glas optical fiber (GOF)
100BasePXFD 0x36 Used transceiver for polymer optical fiber (POF)

Table 205: MAU types for fiber optic ports

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 316/390

8.6.5 PROFINET Netload Requirements

The PROFINET Certification requires at least to pass the Netload Class | tests since V2.31
(mandatory). If the device does not pass these tests the Conformance Test will not be passed and
the device does not get a certificate. The application and firmware must be designed as follows in

order

to be able to pass the tests:

The application shall be split into at least two tasks. One task (e.g. "APP_HI") is entirely
dedicated to the handling of the process data while the acyclic services are handled by the
other task(s) (e.g. "APP_LOW"). The process data task must be configured with a priority
between the "PND_HAL_NWC" task and "RTA" task. Therefore this task must be designed
carefully in order to avoid unintentional consumption of CPU power. If an_application can
process the cyclical-data really fast (e.g. one or two checks, apply to outputs and fetch
inputs) the “APP_HI" can be omitted and whole processing performed in the
"pfnEventHandler" on "PNS_IF_IO0_EVENT_CONSUMER (PROVIDER) UPDATE_DONE"
(see section Set I0-Image Request on page 101 for details). The acyclic application task
shall have a lower priority than the protocol stack (see 8.6.3 for recommended task
priorities).

For netX51 a special memory setup is required to pass the Netload Test Class Il

In order to improve execution speed the netX51 has internal SRAM memory used by the
protocol stack and application. The linker script shall be designed that important parts of the
protocol stack and the process data handling of the application is relocated into the SRAM
areas. The startup code must be adapted as well to perform the necessary relocations from
SDRAM to SRAM at startup. An example startup script and linker script can be found in the
corresponding LOM example.

To improve execution speed of separate tasks it is recommended to allocate the stacks of
"TCP_UDP" task, PROFINET tasks (by priority: "PND_HAL RT", "PNIO_RTC",
"PND_HAL_NWC", "PND_HAL_NRT", "PNIO_RTA", "PNIO_CMDEV") and Application's
tasks also in the internal SRAM memory. E.g. the following part of linker script shows how to
allocate the stacks of "TCP_UDP" and "Packet APl Demo" tasks in the internal memory (see
chapter 8.6.1.4 for definition of the task stacks):

MEMORY

/*

ITCM(rx): ORIGIN = 0x00000080, LENGTH
DTCM(rw): ORIGIN = 0x04050000, LENGTH

/*

itcm & dtcm */
128K + 128K + 64K - 0x80 /* INTRAMO/1/2 */
64K + 64K + 32K + 32K /* INTRAM3/4/5/6 */

stack of the "TLR TIMER" task*/

*Config_netX51.0(.bss. auTskStack TIlr_Timer)

/*

stack of the "Packet API Demo' task*/

*Config_netX51.0(.bss.auTskStack Pck API_Demo)

/*

stack of the "TCP_UDP" task*/

*Config_netX51.0(.-bss.auTskStack Tcp_Task)

- I*

or stack of ALL static tasks declared in the "Config_netX51.c" /

Config_netX51.0(.bss)

PROFI

NET 10O Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 317/390

/* For example the stacks of some PROFINET tasks: */

/*stacks of the "HAL_RTC" task */
Hal_EddPROFINETDevice _common.o(-bss.aulHal RTC TaskStack)
/*stacks of the "HAL_NWC"™ task */
Hal _EddPROFINETDevice_common.o(-bss.aulHal NWC TaskStack)
/*stacks of the "HAL_NRT" task */
Hal _EddPROFINETDevice _common.o(-bss.aulHal NRT_TaskStack)

/*stack of the "PNIO_RTC" task */
PNIORTC_Init.o(.bss.g_RTC_Task_ Stack)

/*stack of the "PNIO_RTA"™ task */
PNIORTA_Init.o(.-bss.s_auiRTATask_TaskStack)

/*stack of the "PNIO_CMDEV' task */
PNIOCMDEV_init.o(.bss.s_auiCMDEVTask_TaskStack)

}>DTCM AT>SDRAM

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 318/390
8.7 PROFINET Certification

Before any PROFINET device appears on the market it has to pass PROFINET certification tests
to prove the conformance according to one of the defined PROFINET conformance classes (A, B
or C).

To achieve conformance class A (without SNMP) or B (with SNMP) the PROFINET Real Time
(RT) protocol behavior and the behavior on network load have to be tested on the device.

If a PROFINET device shall conform to conformance class C, it has to fulfill some additional
requirements including PROFINET Isochronous Real Time (IRT). This chapter explains common
requirements to a PROFINET device for all types of the certification tests.

For detailed information about PROFINET Certification please also refer to [8].

8.7.1 RT Tests (Conformance class A, B and C)
8.7.1.1 Description
The common PROFINET RT certification tests have to be passed by all 10 Device
implementations. These test cases cover the following functionality
basic state machine behavior
different parts of protocol (coding)
reaction of device on erroneous configurations and situations
acyclic services
cyclic data and data-status (I0OXS)

8.7.1.2 General Requirements for RT Tests

In order to execute all test cases the examiner in the certification laboratory should have a
possibility to trigger alarms (diagnosis or process alarms) on a device. For example additional push
button causes an alarm, “magic” sequence of push buttons, deliberate shorting of outputs and so
on. This is required if the device generates alarm / diagnosis at runtime. If no alarm and no
diagnosis are generated at runtime, these tests can be skipped.

It is recommended (but not required) to have a possibility to change input values on a device. For
example set some inputs of an IO-Device to “Hl-level”, change measurement values if it is a sensor
and so on.

A small informal paper describing how to trigger alarms and change |0 Data needs to be given to
the certification laboratory together with the device.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

http://www.profibus.com/nc/download/technical-descriptions-books/downloads/profinet-field-devices-recommendations-for-design-and-implementation/display/?submit_logout=Log+out&logintype=logout&pid=7&redirect_url=http%3A%2F%2Fwww.profibus.com%2F

Special Topics 319/390

8.7.1.3 Common checks before Certification (GSDML)

The device has to be consistent with its own GSDML file. The “DevicelD” and “VendorID” in the
GSDML shall be the same that was used in Set Configuration Service for fields
“PNS_IF_DEVICE_PARAMETER_T::ulVendorld” and “PNS_IF_DEVICE_PARAMETER_T::
ulDeviceld”, or used in data base (if the stack configured with data base), or used in tag list (if
according tag was enabled in firmware). The vendor name shall also be correct:

<ProfileBady =

< Deviceldentity DevicelD="0x0103" VendorID="0x011F"> < ——
<InfoTeaxt Textld="DeviceDescription_InfoText"/=
=WendorName Value="Hilscher Gesellschaft fir Systemautomation mbH" | - ————————
< {Deviceldentity:>
< DeviceFunction>
«<Family MainFamily="1f0" ProductFamily="PN5"/>
< {DeviceFundction =
< ApplicationProcess=
< DevicefcressPointlist
< DevicefccessPointltem AddressAssignment="DCP;LOCAL" DN%_CompatibleName="dfxrepns"
<ModuleInfoz
<Mame Textld="CIFX RE/PN5 V3.5.18 - V3.5x"=
<InfoText Textld="DIM 20_InfoText"/=
<VendorMame Value="Hilscher Gesellschaft fiir Systemautomation mbH"/ <« ——
<OrderNumber Value="1250,100" > < —

<HardwareReleass Valus="2"/>
< SoftwareRelease Value="3.5.x"=
Figure 30: Vendor and device identification in the GSDML file

In addition it is required that the OrderNumber, HardwareRelease and SoftwareRelease from the
GSDML file match the configuration of the PROFINET IO-Device. The values are contained in
PNS_IF_DEVICE_PARAMETER_T.

If a new product is created based on Hilscher GmbH reference GSDML files, it is highly
recommended to remove all non-matching DAPs from the new GSDML file. Otherwise it may lead
to confusion why a new product already has several DAPs inside the GSDML file.

8.7.1.4 Basic Application Behavior

If the application takes care of storing device NameOfStation and IP parameters it has to store
these parameters according to the following rules:

IP-parameters (see section Save IP Address Service on page 156):
If the flag bRemanent is not set the application shall set the permanently stored IP
parameters to 0.0.0.0 and use IP 0.0.0.0 after the next PowerUp cycle.
If the flag bRemanent is set the application shall store the indicated IP parameters
permanent and use them after the next PowerUp cycle

Device NameOfStation (see Save Station Name Service on page 153):
If the flag bRemanent is not set the application shall delete the permanently stored Station
Name and use empty Station Name after the next PowerUp cycle.
If the flag bRemanent is set the application shall store Station Name permanently and use it
after the next PowerUp cycle.

On Reset Factory Settings Indication the application shall delete the permanently stored Station

Name, set the permanently stored IP parameters to 0.0.0.0 and use them after the next PowerUp
cycle (see section Reset Factory Settings Service on page 163).

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 320/390
8.7.2 IRT Tests (Conformance class C only)
8.7.2.1 Description

The common PROFINET IRT certification tests have to be passed by all 10 Device
implementations. These test cases cover the following functionality

basic IRT-related state machine behavior

synchronization related tests

different parts of protocol (coding)

reaction of the device on erroneous configurations and situations
cyclic data and data status (I0XS)

8.7.2.2 General Requirements for IRT Tests

There are no special additional requirements besides those from the RT tests.

8.7.2.3 Hardware Requirements for IRT Tests

To evaluate the synchronization capability of the device it is required to offer an external
synchronization pin to the examiner in the certification laboratory. The synchronization jitter of this
pin needs to be verified. This pin shall be present for the device used during certification test. If this
pin is not available at the devices used in the field, this is accepted.

8.7.2.4 Software Requirements for IRT Tests

Regarding application handling nothing special needs to be taken in account. So for certification no
additional software requirements exist compared to the ones defined for RT tests.

8.7.2.5 GSDML Requirements for IRT Tests

The GSDML file needs to contain the required IRT related keywords. Please refer to Hilscher
reference GSDML files for details. The following listing will just briefly name the required keywords,
there may be more keywords required by GSDML checker tool.

InterfaceSubmoduleltem
SupportedRT_Classes="RT_CLASS_1;RT_CLASS_3"
RT_Class3Properties
ForwardingMode="Relative"
MaxBridgeDelay="5500"
MaxNumberlR_FrameData="256"
StartupMode="Advanced;Legacy"
SynchronisationMode
MaxLocalJitter="50"
SupportedRole="SyncSlave"
SupportedSyncProtocols="PTCP"
T_PLL_MAX="1000"
RT_Class3TimingProperties
ReductionRatio="12 4 8 16"

SendClock="8 16 32 64 128"

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 321/390

PortSubmoduleltem
MaxPortRxDelay="340"
MaxPortTxDelay="92"

8.7.3 Network Load Tests
8.7.3.1 Description

Starting with certification for PROFINET specification V2.3 (expressed in GSDML file of the 10-
Device by using PNIO_Version="V2.31") it is mandatory to execute special network load tests
during certification.

These tests verify the correct behavior of the PROFINET 10 device during different network loads.
The following classes of network load are defined:

network load class |

network load class Il

network load class IlI

The device has to pass at least the tests for “network load class 1" to fulfill the certification
requirements.

8.7.3.2 Requirements to the Application
The main point in the application is the optimization. The following recommendations will help to
achive at least network load class I:

Separate cyclic and acyclic parts of application;

Arrange the tasks priorities according to the recommendations in Table 204;

Allocate all important parts of the protocol stack and the process data handling of the
application in to internal SRAM memory (netX51);

Allocate the stacks of tasks also in internal SRAM memory (netX51).

For more information to the optimization see chapter PROFINET Netload Requirements on page
316 and refer to the LOM example.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 322/390

8.7.4 How to handle I&M Data

Note:
. In order to fulfill PROFINET conformance needs, any PROFINET IO device should
be able to handle the I&MO, I&M1, 1&M2, 1&M3 and I&MO Filter data.

8.74.1 Overview

Identification & Maintenance (1&M) is an integral part of each PROFINET Device implementation. It
provides standarized information about a device and its parts. The 1&M Information is accessible
through PROFINET Record Objects and is always bound to a submodule belonging to the item to
be described. An item means here the PROFINET Device itself or a part of this device e.g. a
plugable module for modular devices. Submodules can provide own I&M objects or share the 1&M
objects of other submodules. The 1&M objects can be grouped into three kinds of information as
described as follows.

1&MO

I&MO is a read only information which describes the associated item. The following fields are
defined:

Field Description Usage Hints

Vendor ID The PNO vendor ID of the associated item. | This is the vendor ID of the manufacturer of the item and
E.g. the vendor of the device or the vendor | not the vendor ID of the PROFINET protocol vendor. Do
of a pluggable module/submodule. not use the Hilscher vendor ID.

Order ID The order ID of the associated item. Order ID as defined by the manufacturer of the item.
Must be equal to any order ID markings on the item
itself.

Serial The serial number of the associated item. Must be an unique serial number associated with the

Number item. Must be equal to any serial number markings on
the item itself.

Hardware The revision of the hardware of the item. Must be equal to any hardware revision markings on the

Revision item itself.

Software The software revision of the item. This is the software version of the whole item including

Revision the PROFINET Protocol implementation and the

Application. This version is managed by the
manufacturer of the item. It must be changed whenever
a part of the software within the item (including the
PROFINET Protocol implementation if it is part of the
item) changes. This is not the version number of the
PROFINET Protocol implementation. Do not use the
Hilscher Version of the PROFINET Protocol
implementation.

Revision Counts the changes of I&M1 to 1&M4 -
Counter objects

Profile ID The Profile of the item if applicable.- -
Profile

Specific Type

Supported Bitmask defining which 1&M objects are -
1&M objects supported by this item.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 323/390

1&M1 to 1&M4

The 1&M1 to 1&M4 objects provide a non-volatile storage for PROFINET engineering related
information. This information is typically generated by the engineering software and stored within
the objects at engineering time. The information must be stored by the device in non-volatile
memory. The objects must be stored physically within the associated item. This means in
particular, if a plugable module is removed from one backplane and plugged into another
backplane, it must deliver the same 1&M1 to 1&M4 information as stored before.

1&M5

Finally, the 1&M5 record provides information about the PROFINET protocol implementation itself.
It is quite similar to 1&MO but describes the PROFINET protocol implementation instead. Thus it is
typically handled by the PROFINET Protocol implementation itself.

I&MO Filter

Addtionally to these submodule specific I&M objects, each PROFINET device must support the
global 1&M Filter Data object, the so called "I&MOFilterData". This is a read-only object which is
used to determine which submodules are associated with dedicated &M objects.

For certification it is required that at exactly one is marked as “device representative” in I&MO Filter
Data object.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 324/390

8.7.4.2 Structure and access paths of I1&M objects

The following figure shows the structural organization of 1&M Records within a device and the
access paths:

Device
! i
(DAP) Module |10 Module : 10 Module 10 Module
I = = = ===
- \ I 1 - -
vo-- L | A
DAF [1 | 1 !
submodull = " @ I 1 ! !
1 b= El El 1
=) = =] o 1 o o] I
E ! z ! z E E E E
1&M 0 N A E : &M 0 E &M 0 E
RN RN - R E HIEK E| laM1 |
ETEN T P R H I a2l i’z |g
EN N L 2 S IEE SHIEERE :
M4 |8 V| * : = : : 180 4 &M 4 "
B ! , | , | A A i
1A . I i I . T [
1 . v .
Read: Wrte Read Read Read Read Read: § Write Read: | Write Read
| [U 1]
v ! v v v v v ! v ! v

Figure 31: Structural organization of I&M Records within a Device and the Access Paths

According to I&M a submodule can be characterized as follows:

Module Representative: The submodule is a representative for the module. This means
that the submodule provides the 1&M information of the superordinate module.

Device Representative: The submodule is a representative for the device. In this case the
submodule provides the 1&M information of the superordinate device. Exactly one submodule
of the device must have this property. Typical the DAP submodule is chosen for this purpose.
Default: The submodule only represents itself or does not have any I&M information at all. In
the latter case only I&M Read Access is allowed and the Read will deliver the I1&M
information of the Module Representative or the Device Representative.

When reading the 1&M objects of a submodule the following order is used to deliver the requested
data:
1. If the submodule provides an own I&MO object, the I&M read access will deliver the
submodule's I&M objects
2. If the submodule has no own 1&MO0 object and the superordinate module has a module
representative, the module representative's 1&M objects will be delivered.
3. If the submodule has no own I&MO object and the superordinate module has no
representativ the device representatives's I&M objects will be delivered.
In contrast to this, writing 1&M1 to 1&M4 objects is only possible on the submodules associated with
the 1&M objects itself.
Finally, the 1&MO Filter Data object contains the information which submodules are associated with
their own 1&M data, which submodules represent their superordinate module and which submodule
represents the whole device. This object is global and a read-only object and it is not associated
with any submodule.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 325/390

8.7.4.3 Usage of 1&M with Hilscher PROFINET Protocol

The PROFINET Device protocol implementation provided by Hilscher supports two modes of
operation with 1&M. For simple applications the PROFINET protocol implementation provides 1&MO0
to 1&M5 objects within the DAP submodule. In this case, the I&M is fully handled by the PROFINET
Protocol implementation without any interaction with the application. If a more complex &M
structure is required, the PROFINET Protocol implementation can forward I&M accesses to the
Application. In this case all I&M objects must be handled by the application. The desired mode of
operation is configured using the Set Configuration Service.

If the PROFINET protocol implementation is configured to handle the I&M internally, the following
parameters will be used within the 1&MO object:

Field Source of value

Vendor ID Vendor ID in Set Configuration Service or Configuration Database. Can be overwritten by
tag list if configuration database is used.

Order ID Order ID in Set Configuration Service or configuration database.

Serial Number Defaults to the serial number from Security Memory / Flash device label. This is the serial

number of the Hilscher communication module if applicable. It shall be changed to the serial
number of the manufacturers device using the Set OEM Parameters service.

Hardware Revision Hardware revision in Set Configuration Service. If a Configuration Database is used the
hardware revision from Security Memory / Flash device label is used. This is the hardware
revision of the Hilscher communication module if applicable.

Software Revision Software revision in Set Configuration Service. If a Configuration Database is used the
PROFINET Protocol implementations software revision will be used.

Revision Counter Internally stored an incremented on each change of I&M1 to 1&M4.

Profile ID Default is '0x00' (Manufacturer specific). Can be changed to a desired value using Set OEM

Parameters service.

Profile Specific Type Default is '0x05' (Generic Device). Can be changed to a desired value using Set OEM
Parameters service.

Supported I&M objects | Defaults to 1&MO to 1&M5. Can be changed to a desired value using Set OEM Parameters
service.

If the application requested to handle the 1&M objects, all &M accesses will be forwarded to the
application using the I&M Read and 1&M Write service. For details on the data structures of the
I&M services refer to the protocol API. The application must store the data of I1&M write services
permanently, so that the I&M1 to 1&M4 objects and the I&MO revision counter can be recovered
after a power cycle. The 1&MO Filter data structure must be filled by the application with a list of the
submodules which are associated with dedicated 1&M data. Exactly one of these submodules must
be characterized as device representative. Characterization as a module representative is optional
and only sensible if the module has more than one submodule. The protocol stack will then
internally build up to three lists out of the information provided by the application.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 326/390

8.8 Second DPM channel — Ethernet Interface

This section is valid for loadable firmware only.

From version 3.8.0.0 of the PROFINET stack, loadable firmware for netX 51 and netX 100 offers a
second dual-port memory channel (channell) for devices with a 64 KB large dual-port memory

only.
Channel Selection 3|l channel Selection x|
—Selection Information = cif¥o rSelection Information
Property | value | - ' Property | value |
™ Channel
Physical Address OxFFEFO000 1annel Physical Address 0xF FEF0000
Interrupt] Interrupt 1]
Device Mumber 7713200 Device Number 7713200
Serial Number 20206 Serial Number 20206
Physical DPM Size 65536 Physical DPM Size 65536
Firmware Name PROFIMNET 10 Device Firmware Name Ethernet Interface
Firmware Version 3.8.0.0 (Buid 0) Firmware Version 4.3.0.0 (Build 0)
Firmware Date 4/15/2015 Firmware Date 2/12/2015
Open Cancel | Open Cancel

Figure 32: PROFINET Stack is accessible on the DPM Channel0 and Ethernet Interface — on the Channell

The Ethernet interface stack provides an API for:

Reusing the API of internal TCP/IP stack running with PROFINET

Send/receive raw Ethernet frames using a dedicated MAC address (NDIS mode)
Depending on the PROFINET loadable firmware some of this APIs may not be available.
For more information about Ethernet Interface stack refer to reference [7].

Note:

o Loadable firmware for netX 51 shows the second DPM channel only, if the NDIS mode is
activated.

Note:
Loadable firmware for netX 50 does not support NDIS mode!

X

Note:

First, the NDIS mode needs to be activated in loadable firmware using the Tag List
Editor software!

Note:

The “cifX Device Driver Setup” delivers a driver for Windows that allows to use the
Ethernet interface stack running NDIS mode as usual Ethernet adapter and appears as
"Virtual cifX Ethernet Adapter".

Note:

Starting with version 3.11.0, the OEM mode (Send/receive raw Ethernet frames to/from
PROFINET interface MAC address) is no longer supported. The NDIS mode has
replaced the OEM mode.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics

327/390

Activation of the NDIS mode

By default the NDIS mode for the Ethernet interface is deactivated in loadable firmware. First, use
the Tag List Editor software to activate the NDIS mode.

load firmware (1)
go to the “Ethernet NDIS Support” tag (2)
set check box “Enable NDIS Support” (3)
save the loadable firmware with activated NDIS support (4).

™ netX Tag List Editor/NX0 Builder 1.1.16238.0

Fila Wigw

=0l x|

¥ | LED:
v LED
LED:
LED:
LED:
LED:

PHS_SF

POF_PORTOACT
POF_PORTOLIME
POF_PORT1ACT
POF_PORTILIME

Fthermet TBEerfare TP Pork Mumbers

Ethernet MDIS Suppork

Tag lisk

—Load/Save (Currert file bype: MEF)

v)

W

v ART Dvagrnostics Interface

v | USE Diagnostics Interface
PROFIMET Product Information

v Profinet Features

Tag enabled

| PNS_BF (Enable MDIS Support ¥] Enable NDIS

3 Support

This tag enables or disables MDIS
suppaort for the Ethernet interface.

[Enable |Enable/Disable NDIS

Load

| Save as | Save |

MEOMEE ID:'l,F‘rDjectsNET'l,F‘NS_L.l (_ Load

-ﬂ Save as |(_ Save]

Quit

1
[V Display Help Cleat

4
| Edit Dievice Headerl

Message Log

09:47:06:
09:47:06:
09:47:06:
09:47:06:
09:47:06:
09:47:06:
09:47:06:
09:47:06:
09:47:06:
09:47:06:

LEC: PMNS_BF

LEC: POF_PORTOACT

LEC: POF_PORTOLIME

LEC: POF_PORTIACT

LEC: POF_PORTILIME

Ethernet Interface TCP Port Numbers
Ethernet MDIS Support

UART Diagnostics Interface

|ISE Diagnostics Interface

PROFIMET Product Information

S

i

=

|Test ‘Taglist Editar' in progress. . .Lua uses 4827 kilobytes

4

Figure 33: PROFINET Stack is accessible on the DPM channelO and Ethernet Interfaceon the channell

Important note:

Using the “Ethernet Interface” in NDIS mode has a negative effect on netload
environment! It may be a drawback in achieving of the desired network load
class in the PROFINET IO-Device certification.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Special Topics 328/390

8.9 Isochronous Application

The aim of this chapter is to support the development of the isochronous PROFINET devices
based on the netX chip with the current version of the stack.

Detailed description of the isochronous mode is given in [6].

The most important ability of the isochronous PROFINET device is to deliver the process data
(latch inputs and set outputs) exactly to the configured (planned) time in nanosecond accuracy.
These strict timing-requirements have to be solved by software structure: all the tasks in OS that
are responsible for cyclic data exchange should have the highest priority.

In case of NXLOM see recommendations to the task priorities described above in chapter 8.6.3

In case of LFW an application has possibility to activate the DPM watchdog to supervise the
protocol stack and vice versa (see 7.1.5.1 parameter ulWdgTime). The DPM watchdog

mechanism is implemented in rcX OS in context of the RX TIMER task. If a developed
application will support isochronous mode the RX_TIMER task has to be necessarily

switched to lower priority. Attention, it has impact on watchdog functionality:

. ~ The DPM watchdog supervising can reach timeout in case of high network load
A o with PROFINET cyclic (RTC) frames (case of network load tests in certification)
without any failure of the PROFINET Stack or OS.

So it is not recommended to activate the DPM watchdog in case of isochronous application!

In case of isochronous application use “Tag List Editor” to switch the RX_TIMER task to
lower priority in the " Interrupt: RX_TIMER" tag (see figure below).

To limit the possible side-effects the priority of the RX_TIMER task will be set forcibly always to
TSK_PRIO_5 (according to chapter 8.6.3) independently of the priority "TSK_PRIO_**"
selection!

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics

329/390

B8 retX Tag List Editor/MXO Builder 1.2.0.0

oo

File Wiew
v| LED: PNS_SF Tagenabled Int o
v'| LED: PNS_EF Identifier RX_TIMER nt ﬂ
LED: POF_PORTOACT S
LED: POF_PORTOLINK Interrupt Priority | 1 = el
el iority |TSK PRIOS =
LED: POF_PORT1LINK Task Priority This
| Ethernet and Fiber Cptic IF Task Token i tag
v | Ethernet Interface TCP Port Numbers EE—EEE—; allow:
v | Ethernet NDIS .Support_ TSK_PRIO 3 to
¥ | net¥ 100,500 Fiber Optic DMI TSK PRIO 4 confic
v UART Diagnostics Interface TSK_PRIO 5 the
v USE Diagnostics Interface TSK_PRIC_& ke
PROFINET Product Information T5K_PRIO_7 v
W | Drof] TSK_PRIC_3 = settin
n TSK_PRIO_S of
i Ll Interrupt: RX_TIMER TSK_PRIO_10 an
TSK_PRIO_11 ndlivic
TSK_PRIO_12 .
Load/Save (Current file type: NXF) TSK_PRID_13 Ir'ltt_arrl
Tag list TSK_PRIO_14] [Save as] [Save] Using
TSK_PRIO_15 | | the
NXONXF C:\cifipns.nf TKPRIC 16 |][saveas |[Save | -
TSK_PRIO_17 b
TSK_PRIO_18
it | Display Hel Clear Edit Device He 1=~ PRIO_13
splay Help | I T PRI 19
TSK_PRIO_21
Message Log TSK_PRIO_22 x
11:23:56: PROFINET Product Information TSK_PRIO_23 -
11:23:56: Profinet Features TSK_PRIO_24
11:23:56: Interrupt: R%_TIMER TSK_PRIO_25
11:23:56: lua load: searching 'file: /C%3A/Program Files (x8&)Hilsct TSK_PRIO_26 tor frxo_editor fhelp/RCY_TAG_LED_T.htm'
11:23:56: lua load: Read 0x000001C0 bytes TSK_PRIO_27
11:23:58: lua load: searching 'file: /C%3A/Program Files (x86)Hilsc TSK_PRIOC_28
Editor fnxo_editor fhelp/RCX_TAG_INTERRUPT_T.htm' TSK_PRIO_ 29 ¥ A
11:23:58: lua load: Read 0x00000687 bytes .
Test 'Taglist Editer' in progress...Lua uses 3013 kilobytes

Figure 34: Priority setup of the RX_TIMER task in the loadable PROFINET firmware for isochronous application

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Special Topics 330/390
8.10 PROFINET Status Code

The PROFINET status code is used by the PROFINET protocol to indicate success or failure. This
chapter shall give a short introduction to this topic, as the status helps to solve problems and is
used in some services as well (The according field is often named ulPnio). These services

include:
Read Record Service
Write Record Service
AR Abort Indication service
AR Abort Request Service

The status code is an unsigned 32 bit integer value which can be structured into four fields as
shown in Figure 21: Structure of the PROFINET status code.

Ox DE |80 |A9|80 |

ErrorCode2

ErrorCodel

ErrorDecode

ErrorCode

Figure 35: Structure of the PROFINET Status Code

The fields define a hierarchy on the error codes. The ordering is as follows: ErrorCode,
ErrorDecode, ErrorCodel and ErrorCode2. The meaning of lower order fields depends on the
values of the higher order fields. The special value 0x00000000 means no error or success.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics

331/390

8.10.1 The ErrorCode Field

This field defines the domain, in which the error occured. The following table shows the valid

values:

Value Meaning/Use Description

0x20 - Ox3F Manufacturer specific: for To be used when the application generates a log book entry.
Log Book Meaning of the values is manufacturer specific (Defined by

manufacturer of the device.)

0x81 PNIO: for all errors not Used for all errors not covered by the other domains
covered elsewhere

OxCF RTA error: used in RTA Used in alarm error telegrams (Low Level)
error PDUs

OxDA AlarmAck: used in RTA data | Used in alarm data telegrams (High Level)
PDUs

0xDB I0ODConnectRes: RPC Used to indicate errors occurred when handling a Connect
Connect Response request.

0xDC IODReleaseRes: RPC Used to indicate errors occurred when handling a Release
Release Response request.

OxDD IODControlRes: RPC Used to indicate errors occurred when handling a Control
Control Response request.

OxDE IODReadRes: RPC Read Used to indicate errors occurred when handling a Read request.
Response

OxDF IODWriteRes: RPC Write Used to indicate error occurred when handling a Write response

Response

Table 206: Coding of PNIO Status ErrorCode (Excluding reserved Values)

8.10.2 The ErrorDecode Field

This field defines the context, under which the error occurred.

Value Meaning/Use Description

0x80 PNIORW: Application Used in the context of Read and Write services handled by either
errors of the services the PROFINET Device stack or by the Application
Read and Write

0x81 PNIO: Other Services Used in context with any other services.

0x82 Manufacturer Specific: Used in context with LogBook entries generated by the stack or by
LogBook Entries the application.

Table 207: Coding of PNIO status ErrorDecode (Excluding reserved Values)

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 332/390

8.10.3 The ErrorCodel and ErrorCode2 Fields

The ErrorCodel and ErrorCode2 fields finally specify the error. The meaning of the both fields
depends on the value of the ErrorDecode Field.

8.10.3.1 ErrorCodel and ErrorCode2 for ErrorDecode = PNIORW

If the field ErrorDecode is set to the value PNIORW, the field ErrorCode2 shall be encoded user
specific and the ErrorCodel field is split into an ErrorClass Nibble and an ErrorDecode Nibble as

shown in Table 167: Coding of ErrorCodel for ErrorDecode = PNIORW.

_) Note:
. As the ErrorCode?2 field can be freely chosen in this case, the application may use it to
provide more detailed information about the error (e.g. why writing the record into the

module was not possible, which value of the parameter was wrong...)

ErrorClass (Bit 7 — 4) Meaning ErrorDecode (Bit 3- 0) Meaning
OxA Application | Ox0 Read Error
0x1 Write Error
0x2 Module Failure
Ox7 Busy
0x8 Version Conflict
0x9 Feature Not Supported
OxA-OxF User Specific
OxB Access 0x0 Invalid Index
0x1 Write Length Error
0x2 Invalid Slot/Subslot
0x3 Type Conflict
Ox4 Invalid Area/Api
0x5 State Conflict
0x6 Access Denied
0x7 Invalid Range
0x8 Invalid Parameter
0x9 Invalid Type
OxA Backup
OxB-0xF User specific
0xC Resource 0x0 Read Constrain Conflict
0ox1 Write Constrain Conflict
0x2 Resource Busy
0x3 Resource Unavailable
0x8-0xF User specific
OxD-0xF User 0x0-OxF User specific
Specific

Table 208: Coding of ErrorCodel for ErrorDecode = PNIORW. (Excluding reserved Values)

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Special Topics 333/390

8.10.4 ErrorCodel and ErrorCode?2 for ErrorDecode = PNIO

The meaning of ErrorCodel and ErrorCode2 for ErrorDecode = PNIO is shown in the following
table. This kind of PROFINET status codes should only be used in conjunction with the AR Abort
Request Service (See end of table).

Coding of ErrorCodel and ErrorCode 2 for ErrorDecode = PNIO:

ErrCodel Description ErrCode2 Description / Use

0x01 Connect Parameter Error. Faulty | 0x00-0x0D Error in one of the Block Parameters
ARBlockReq

0x02 Connect Parameter Error. Faulty | 0x00-0x1C Error in one of the Block Parameters
IOCRBIockReq

0x03 Connect Parameter Error. Faulty | 0x00-0x10 Error in one of the Block Parameters
ExpectedSubmoduleBlockReq

0x04 Connect Parameter Error. Faulty | 0x00-OxOF Error in one of the Block Parameters
AlarmCRBIlockReq

0x05 Connect Parameter Error. Faulty | 0x00-0x08 Error in one of the Block Parameters
PrmServerBlockReq

0x06 Connect Parameter Error. Faulty | 0x00-0x08 Error in one of the Block Parameters
MCRBlockReq

0x07 Connect Parameter Error. Faulty | 0x00-0x04 Error in one of the Block Parameters
ARRPCBIockReq

0x08 Read Write Record Parameter 0x00-0x0C Error in one of the Block Parameters
Error. Faulty Record

0x09 Connect Parameter Error Faulty 0x00-0x05 Error in one of the Block Parameters
IRInfoBlock

Ox0A Connect Parameter Error Faulty 0x00-0x05 Error in one of the Block Parameters
SRInfoBlock

0x0B Connect Parameter Error Faulty 0x00-0x05 Error in one of the Block Parameters
ARFSUBIock

0x14 I0DControl Parameter Error. 0x00-0x09 Error in one of the Block Parameters

Faulty ControlBlockConnect

0x15 I0DControl Parameter Error. 0x00-0x09 Error in one of the Block Parameters
Faulty ControlBlockPlug

0x16 I0XControl Parameter Error. 0x00-0x07 Error in one of the Block Parameters
Faulty ControlBlock after a
connection establishment

0x17 I0XControl Parameter Error. 0x00-0x07 Error in one of the Block Parameters
Faulty ControlBlock a plug alarm

0x18 I0DControl Parameter Error 0x00-0x09 Error in one of the Block Parameters
Faulty ControlBlockPrmBegin

0x19 I0DControl Parameter Error 0x00-0x07 Error in one of the Block Parameters
Faulty SubmoduleListBlock

0x28 Release Parameter Error. Faulty | 0x00-0x07 Error in one of the Block Parameters
ReleaseBlock

0x32 Response Parameter Error. 0x00-0x08 Error in one of the Block Parameters
Faulty ARBlockRes

0x33 Response Parameter Error. 0x00-0x06 Error in one of the Block Parameters
Faulty IOCRBIlockRes

0x34 Response Parameter Error. 0x00-0x06 Error in one of the Block Parameters
Faulty AlarmCRBIlockRes

0x35 Response Parameter Error. 0x00-0x0D Error in one of the Block Parameters

Faulty ModuleDiffBlock

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 334/390

ErrCodel Description ErrCode2 Description / Use
0x36 Response Parameter Error. 0x00-0x04 Error in one of the Block Parameters
Faulty ARRPCBIockRes
0x37 Response Parameter Error 0x00-0x05 Error in one of the Block Parameters
Faulty ARServerBlockRes
0x3C AlarmAck Error Codes 0x00 Alarm Type Not Supported
0x01 Wrong Submodule State
0x3D CMDEV 0x00 State conflict
0x01 Resource

0x02-0xFF State machine specific

Ox3E CMCTL 0x00 State conflict
0x01 Timeout
0x02 No data send
Ox3F CTLDINA 0x00 No DCP active
0x01 DNS Unknown_RealStationName
0x02 DCP No_RealStationName
0x03 DCP Multiple_RealStationName
0x04 DCP No_StationName
0x05 No_IP_Addr
0x06 DCP_Set_Error
0x40 CMRPC 0x00 ArgsLength invalid
0x01 Unknown Blocks
0x02 IOCR Missing
0x03 Wrong AlarmCRBIlock count
0x04 Out of AR Resources
0x05 AR UUID Unknown
0x06 State conflict
0x07 Out of Provider, Consumer or Alarm
Resources
0x08 Out of memory
0x09 PDev already owned
O0x0A ARset State conflict during connection
establishment
0x0B ARset Parameter conflict during connection
establishment
0x41 ALPMI 0x00 Invalid state
0x01 Wrong ACK-PDU
0x42 ALPMR 0x00 Invalid state
0x01 Wrong Notification PDU
0x43 LMPM 0x00-0xFF Ethernet Switch Errors
0x44 MAC 0x00-OxFF
0x45 RPC 0x01 CLRPC_ERR_REJECTED: EPM or Server

rejected the call.

0x02 CLRPC_ERR_FAULTED: Server had fault
while executing the call

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics

335/390

ErrCodel Description ErrCode2 Description / Use
0x03 CLRPC_ERR_TIMEOUT: EPM or Server did
not respond
0x04 CLRPC_ERR_IN_ARGS; Broadcast or maybe
“ndr_data” too large
0x05 CLRPC_ERR_OUT_ARGS: Server sent back
more than “alloc_len”
0x06 CLRPC_ERR_DECODE: Result of EPM
Lookup could not be decoded
0x07 CLRPC_ERR_PNIO_OUT_ARGS: Out-args
not “PN IO signature”, too short or inconsistent
0x08 CLRPC_ERR_PNIO_APP_TIMEOUT: RPC
qall was terminated after RPC application
timeout
0x46 APMR 0x00 Invalid state
0x01 LMPM signaled an error
ox47 APMS 0x00 Invalid state
0x01 LMPM signaled an error
0x02 Timeout
0x48 CPM 0x00 Invalid state
0x49 PPM 0x00 Invalid state
Ox4A DCPUCS 0x00 Invalid state
0x01 LMPM signaled an error
0x02 Timeout
0x4B DCPUCR 0x00 Invalid state
0x01 LMPM signaled an error
0x4C DCPMCS 0x00 Invalid state
0x01 LMPM signaled an error
0x4D DCPMCR 0x00 Invalid state
0x01 LMPM signaled an error
Ox4E FSPM 0x00-OxFF FAL Service Protocol Machine error
0x64 CTLSM 0x00 Invalid state
0x01 CTLSM signaled error
0x65 CTLRDI 0x00 Invalid state
0x01 CTLRDI signaled an error
0x66 CTLRDR 0x00 Invalid state
0x01 CTLRDR signaled an error
0x67 CTLWRI 0x00 Invalid state
0x01 CTLWRI signaled an error
0x68 CTLWRR 0x00 Invalid State
0x01 CTLWRR signaled an error
0x69 CTLIO 0x00 Invalid state
0x01 CTLIO signaled an error
Ox6A CTLSU 0x00 Invalid state
0x01 AR add provider or consumer failed

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Special Topics

336/390

ErrCodel Description ErrCode2 Description / Use
0x02 AR alarm-open failed
0x03 AR alarm-ack-send
0x04 AR alarm-send
0x05 AR alarm-ind
0x6B CTLRPC 0x00 Invalid state
0x01 CTLRPC signaled an error
0x6C CTLPBE 0x00 Invalid state
0x01 CTLPBE signaled an error
0xC8 CMSM 0x00 Invalid state
0x01 CMSM signaled an error
OxCA CMRDR 0x00 Invalid state
0x01 CMRDR signaled an error
oxccC CMWRR 0x00 Invalid state
0x01 AR is not in state Primary. (Write not allowed)
0x02 CMWRR signaled an error
OxCD CMIO 0x00 Invalid state
0x01 CMIO signaled an error
OxCE CMSU 0x00 Invalid state
0x01 AR add provider or consumer failed
0x02 AR alarm-open failed
0x03 AR alarm-send
0x04 AR alam-ack-send
0x05 AR alarm-ind
0xDO CMINA 0x00 Invalid state
0x01 CMINA signaled an error
OxD1 CMPBE 0x00 Invalid state
0x01 CMPBE signaled an error
0xD2 CMDMC 0x00 Invalid state
0x01 CMDMC signaled an error
OxFD Used by RTA for protocol error 0x00 Reserved
(RTA_ERR_CLS_PROTOCOL) 0x01 error within the coordination of sequence
numbers (RTA_ERR_CODE_SEQ)
0x02 instance closed (RTA_ERR_ABORT)
0x03 AR out of memory (RTA_ERR_ABORT)
0x04 AR add provider or consumer failed
(RTA_ERR_ABORT)
0x05 AR consumer DHT / WDT expired
(RTA_ERR_ABORT)
0x06 AR cmi timeout (RTA_ERR_ABORT)
0x07 AR alarm-open failed (RTA_ERR_ABORT)
0x08 AR alarm-send.cnf(-) (RTA_ERR_ABORT)
0x09 AR alarm-ack- send.cnf(-) (RTA_ERR_ABORT)

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics

337/390

ErrCodel Description ErrCode2 Description / Use

O0x0A AR alarm data too long (RTA_ERR_ABORT)

0x0B AR alarm.ind(err) (RTA_ERR_ABORT)

0x0C AR rpc-client call.cnf(-) (RTA_ERR_ABORT)

0x0D AR abort.req (RTA_ERR_ABORT)

Ox0E AR re-run aborts existing (RTA_ERR_ABORT)

OxOF AR release.ind received (RTA_ERR_ABORT)

0x10 AR device deactivated (RTA_ERR_ABORT)

0x11 AR removed (RTA_ERR_ABORT)

0x12 AR protocol violation (RTA_ERR_ABORT)

0x13 AR name resolution error (RTA_ERR_ABORT)

0x14 AR RPC-Bind error (RTA_ERR_ABORT)

0x15 AR RPC-Connect error (RTA_ERR_ABORT)

0x16 AR RPC-Read error (RTA_ERR_ABORT)

0x17 AR RPC-Write error (RTA_ERR_ABORT)

0x18 AR RPC-Control error (RTA_ERR_ABORT)

0x19 AR forbidden pull or plug after check.rsp and
before in- data.ind (RTA_ERR_ABORT)

Ox1A AR AP removed (RTA_ERR_ABORT)

0x1B AR link down (RTA_ERR_ABORT)

ox1C AR could not register multicast-mac address
(RTA_ERR_ABORT)

0x1D not synchronized (cannot start companion-ar)
(RTA_ERR_ABORT)

Ox1E wrong topology (cannot start companion-ar)
(RTA_ERR_ABORT)

Ox1F dcp, station-name changed (RTA_ERR_ABORT)

0x20 dcp, reset to factory-settings
(RTA_ERR_ABORT)

0x21 cannot start companion-AR because a 0x8ipp
submodule in the first AR... (RTA_ERR_ABORT)

0x22 no irdata record yet (RTA_ERR_ABORT)

0x23 PDEV (RTA_ERROR_ABORT)

0x24 PDEV, no port offers required speed /
duplexity (RTA_ERR_ABORT)

0x25 IP-suite [of the IOC] changed by means of
DCP set(IPParameter) or local engineering
(RTA_ERR_ABORT)

0x26 IOCARSR RDHT expired
(RTA_ERROR_ABORT)

0xC9 AR removed by reason of watchdog timeout in

the Application task (RTA_ERROR_ABORT)

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

http://lingvopro.abbyyonline.com/ru/Search/GlossaryItemExtraInfo?text=%d0%bf%d0%be%20%d0%bf%d1%80%d0%b8%d1%87%d0%b8%d0%bd%d0%b5&translation=by%20reason%20of&srcLang=ru&destLang=en

Special Topics 338/390
ErrCodel Description ErrCode2 Description / Use
O0xCA AR removed by reason of pool underflow in the
Application task (RTA_ERROR_ABORT)
0xCB AR removed by reason of unsuccessful packet
sending (Queue) inside OS in the Application
task (RTA_ERROR_ABORT)
0xCC AR removed by reason of unsuccessful
memory allocation in the Application task
(RTA_ERROR_ABORT)
OxFF User specific 0x00-0xFE User specific
OxXFF Recommended for “User abort” without further
detail

Table 209: Coding of ErrorCodel for ErrorDecode = PNIO. (Excluding reserved Values)

8.10.5 ErrorCodel and ErrorCode2 for ErrorDecode is Manufacturer
Specific

If ErrorDecode is set to Manufacturer Specific, the values of the fields ErrorCodel and ErrorCode2
could be freely chosen.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

http://lingvopro.abbyyonline.com/ru/Search/GlossaryItemExtraInfo?text=%d0%bf%d0%be%20%d0%bf%d1%80%d0%b8%d1%87%d0%b8%d0%bd%d0%b5&translation=by%20reason%20of&srcLang=ru&destLang=en
http://lingvopro.abbyyonline.com/ru/Search/GlossaryItemExtraInfo?text=%d0%bf%d0%be%20%d0%bf%d1%80%d0%b8%d1%87%d0%b8%d0%bd%d0%b5&translation=by%20reason%20of&srcLang=ru&destLang=en
http://lingvopro.abbyyonline.com/ru/Search/GlossaryItemExtraInfo?text=%d0%bf%d0%be%20%d0%bf%d1%80%d0%b8%d1%87%d0%b8%d0%bd%d0%b5&translation=by%20reason%20of&srcLang=ru&destLang=en

Special Topics 339/390

8.11 Remanent Data Handling
8.11.1 Remanent Data

Remanent data contain device parameters e.g. IRT related parameters, Ethernetport related
parameters, Name of Station and IP Address Parameters which an 10 Device has to store
permanently. The stack automatically updates the remanent data when requested via PROFINET
by DCP Set NameOfStation and DPC SET IP.

When you design your application you have to determine whether the stack or the application store
the remanent data. According to your decision, the application has to configure the stack using the
parameter ulSystemFlags: Remanent Data Handling bit (D14). The parameter ulSystemFlags
is set with the Set Configuration Service (see page 67).

Remanent data is Description
stored by
Stack The stack stores the remanent data

Requirements
= anon-volatile memory has to be connected to the netX
» a Flash-based file system

Configuration

The application has to set parameter Remanent Data Handling (D14) bit
PNS_IF_SYSTEM_DISABLE_STORE_REMANENT_DISABLE in ulSystemFlags to 0 using
the Set Configuration Service (see page 67).

Application The application stores the remanent data

Requirement

The application has to use the Load Remanent Data Service (see page 97) and to support the
Store Remanent Data Service (see page 139).

Configuration

The application has to send the Load Remanent Data service to the stack, before the
application sends the Set Configuration service.

The application has to set parameter Remanent Data Handling (D14)
PNS_IF_SYSTEM_DISABLE_STORE_REMANENT_ENABLED in ulSystemFlags to 1
using the Set Configuration Service (see page 67).

During runtime

The stack indicates to the application the Store Remanent Data Service (see page 139) and
the application has to store the data remanent.

Table 210: Stack or Application stores Remanent Data

The setting of the parameter Device name and IP Parameters Handling (D17) of ulSystemFlags
with the Set Configuration Service is also relevant for the behavior of the application, see section
Parameters ‘Name of Station’ and ‘IP Address Parameters’ on page 340.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 340/390

8.11.2 Parameters ‘Name of Station’ and ‘IP Address Parameters’

The Set Configuration Service includes the setting for the Name of Station and the IP Parameters.
These parameters can change during runtime. The stack always indicates to the application a
change of the Name of Station (section Save Station Name Service on page 153) or a change of
the IP Address (section Save IP Address Service on page 156). The application has to store these
parameters permanently and use them for the next Set Configuration Service. For this purpose, the
setting of parameter Device Name and IP Parameters Handling (D17) is relevant for the storing of
parameters and for the behavior of the application.

If set to 0 (PNS_IF_SYSTEM_NAME_IP_HANDLING_BY_STACK_DISABLED), the
application has to store the parameters Name of Station and the IP Address parameters
because they are used in the Set Configuration Service. This means that the application has
to store these parameters permanently when the indications
PNS_IF_SAVE_STATION_NAME_IND and/or PNS_IF_SAVE_IP_ADDR_IND are sent from
the stack. The application has to use the stored values in the next Set Configuration Service.
The application has to reset them on PNS_IF_RESET_FACTORY_SETTINGS_IND and use
the reset values in the next Set Configuration Service.

If set to 1 (PNS_IF_SYSTEM_NAME_IP_HANDLING_BY_STACK_ENABLED), the
application does not need to store the parameters Name of Station and the IP Address
parameters. The parameters for Name of Station and the IP Address parameters transferred
with the Set Configuration Service are ignored and the values from the remanent data are
used instead.

Note: If Remanent Data Handling (D14) is set to 1
(PNS_IF_SYSTEM_DISABLE_STORE_REMANENT_ENABLED) and the application does
not use the Load Remanent Service, the Name of Station is not set!

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Special Topics 341/390

8.12 Identification & Maintenance 5 (I&M5)

While 1&MO0 to I1&M4 are quite old datasets (back from Profibus times) PROFINET introduced a
new 1&M5 dataset. Its main purpose is visibility of communication interfaces in PROFINET devices.

If a fixed communication module is used (e.g. a PC card) to handle the whole PROFINET
communication and the application us running decoupled (e.g. as application program on the PC) it
is expected that the I&MO dataset shows vendor identification of the application.

The information “a PC card with its own dedicated firmware is used” is not visible from the outside
world via PROFINET 1&MO0. The new dataset I&M5 was introduced to solve this issue.

It is expected that this kind of device will support I&MO dataset as well as I&M5. Inside 1&MO0 the
VendorID and DevicelD of the whole device is used (as set by its application). In I&M5 however the
VendorID and DevicelD of the manufacteurer of the PC card is visible.

For more details and use cases about I&M5 please refer to [8] and [9].

8.12.1 APIs for usage of I&M5

The following APIs are exist to modify the behavior of PROFINET 10 Device protocol stack
regarding I&M5.

Set OEM Parameters Request

In case PROFINET 10 Device protocol stack handles 1&M data using
PNS_IF_ SET_OEM_PARAMETERS TYPE 5 field ullMFlags support of I1&M5 can be
disabled

In case PROFINET 10 Device protocol stack handles 1&M data using
PNS_IF_SET_OEM_PARAMETERS_TYPE_9 the I&M5 content reported to the network can
be changed

Read 1&M Service

In case the application handles I&M data it is possible to freely choose the values reported to
I&M5. 1t is possible to not support 1&M5 by setting the 1&MSupported field in 1&MO
accordingly.

PNS_ Stacklnit()

In case of NXLOM the Flag “PROFINET_I10DEVICE_STARTUP_FLAG_IM5_SUPPORTED”
can be used to enable / disable 1&M5 support

Get Parameter Service

Using the parametertype PNS_IF_PARAM_IM5_DATA it is possible to read out the values
the PROFINET 10 Device protocol stack would respond on the network in case 1&M5 is read.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview 342/390

9 Status/Error Codes Overview
9.1 General Errors

Packet Status/Error

Hexadecimal Value Definition
Description
0x00000000 TLR_S_OK
Status ok.
0xC0300001 TLR_E_PNS_IF_COMMAND_INVALID
Invalid command.
0xC0300002 TLR_E_PNS_IF_OS_INIT_FAILED
Initialization of PNS Operating system adaptation failed.
0xC0300003 TLR_E_PNS_IF_SET_INIT_IP_FAILED
Initialization of PNS IP address failed.
0xC0300004 TLR_E_PNS_IF_PNIO_SETUP_FAILED
PROFINET IO-Device Setup failed.
0xC0300005 TLR_E_PNS_IF_DEVICE_INFO_ALREADY_SET
Device information set already.
0xC0300006 TLR_E_PNS_IF_SET_DEVICE_INFO_FAILED
Setting of device information failed.
0xC0300007 TLR_E_PNS_IF_NO_DEVICE_SETUP
PROFINET IO-Device stack is not initialized. Send PNS_IF_SET_DEVICEINFO_REQ before
PNS_IF_OPEN_DEVICE_REQ.
0xC0300008 TLR_E_PNS_IF_DEVICE_OPEN_FAILED
Opening a device instance failed.
0xC0300009 TLR_E_PNS_IF_NO_DEVICE_INSTANCE
No device instance open.
0xC030000A TLR_E_PNS_IF_PLUG_MODULE_FAILED
Plugging a module failed.
0xC030000B TLR_E_PNS_IF_PLUG_SUBMODULE_FAILED
Plugging a submodule failed.
0xC030000C TLR_E_PNS_IF_DEVICE_START_FAILED
Start of PROFINET IO-Device failed.
0xC030000D TLR_E_PNS_IF_EDD_ENABLE_FAILED
Start of network communication failed.
0xC030000E TLR_E_PNS_IF_ALLOC_MNGMNT_BUFFER_FAILED
Allocation of a device instance management buffer failed.
0xC030000F TLR_E_PNS_IF_DEVICE_HANDLE_NULL
Given device handle is NULL.
0xC0300010 TLR_E_PNS_IF_SET_APPL_READY_FAILED
Command PNS_IF_SET_APPL_READY_REQ failed.
0xC0300011 TLR_E_PNS_IF_SET _DEVSTATE_FAILED
Command PNS_IF_SET_DEVSTATE_REQ failed.
0xC0300012 TLR_E_PNS_IF_PULL_SUBMODULE_FAILED
Pulling the submodule failed.
0xC0300013 TLR_E_PNS_IF_PULL_MODULE_FAILED
Pulling the module failed.
0xC0300014 TLR_E_PNS_IF_WRONG_DEST_ID

Destination ID in command invalid.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview 343/390
Hexadecimal Value Definition
Description
0xC0300015 TLR_E_PNS_IF_DEVICE_HANDLE_INVALID
Device Handle in command invalid.
0xC0300016 TLR_E_PNS_IF_CALLBACK_TIMEOUT
PNS stack callback timeout.
0xC0300017 TLR_E_PNS_IF_PACKET_POOL_EMPTY
PNS_IF packet pool empty.
0xC0300018 TLR_E_PNS_IF_ADD_API_FAILED
Command PNS_IF_ADD_API_REQ failed.
0xC0300019 TLR_E_PNS_IF_SET_SUB_STATE_FAILED
Setting submodule state failed.
0xC030001A TLR_E_PNS_IF_NO_NW_DBM_ERROR
No network configuration DBM-file.
0xC030001B TLR_E_PNS_IF_NW_SETUP_TABLE_ERROR
Error during reading the "SETUP" table of the network configuration DBM-file .
0xC030001C TLR_E_PNS_IF_CFG_SETUP_TABLE_ERROR
Error during reading the "SETUP" table of the config.xxx DBM-file .
0xC030001D TLR_E_PNS_IF_NO_CFG_DBM_ERROR
No config.xxx DBM-file.
0xC030001E TLR_E_PNS_IF_DBM_DATASET_ERROR
Error getting dataset pointer.
0xC030001F TLR_E_PNS_IF_SETUPEX_TABLE_ERROR
Error getting dataset pointer(SETUP_EX table).
0xC0300020 TLR_E_PNS_IF_AP_TABLE_ERROR
Error getting either dataset pointer or number of datasets(AP table).
0xC0300021 TLR_E_PNS_IF_MODULES_TABLE_ERROR
Error getting either dataset pointer or number of datasets(MODULE table).
0xC0300022 TLR_E_PNS_IF_SUBMODULES_TABLE_ERROR
Error getting either dataset pointer or number of datasets(SUBMODULE table).
0xC0300023 TLR_E_PNS_IF_PNIO_SETUP_ERROR
Error setting up PNIO configuration(PNIO_setup()).
0xC0300024 TLR_E_PNS_IF_MODULES_GET_REC
Error getting record of "MODULES" linked table.
0xC0300025 TLR_E_PNS_IF_SUBMODULES_GET_REC
Error getting record of "SUBMODULES" linked table.
0xC0300026 TLR_E_PNS_IF_PNIOD_MODULE_ID_TABLE_ERROR
Error accessing "PNIOD_MODULE_ID" table or table record error.
0xC0300027 TLR_E_PNS_IF_SIGNALS_TABLE_ERROR
Error accessing "SIGNALS" table or table record error.
0xC0300028 TLR_E_PNS_IF_MODULES I0_TABLE_ERROR
Error accessing "MODULES_IO" table or table record error.
0xC0300029 TLR_E_PNS_IF_CHANNEL_SETTING_TABLE_ERROR
Error accessing "CHANNEL_SETTING" table or table record error.
0xC030002A TLR_E_PNS_IF_WRITE_DBM
Error writing DBM-file.
0xC030002B TLR_E_PNS_IF_DPM_CONFIG
No basic DPM configuration.
0xC030002C TLR_E_PNS_IF_WATCHDOG
Application did not trigger the watchdog.
0xC030002D TLR_E_PNS_IF_SIGNALS_SUBMODULES

Data length in "SIGNALS" table does not correspond to that in "SUBMODULES" table.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview 344/390

Hexadecimal Value Definition
Description
0xC030002E TLR_E_PNS_IF_READ_DPM_SUBAREA
Failed to read DPM subarea.
0xC030002F TLR_E_PNS_IF_MOD_0_SUB_1
Error configuring Module 0 Submodule 1.
0xC0300030 TLR_E_PNS_IF_SIGNALS_LENGTH
Length of I/O signals is bigger then the size of DPM subarea.
0xC0300031 TLR_E_PNS_IF_SUB_TRANSFER_DIRECTION
A submodule cannot have input and outputs at the same time.
0xC0300032 TLR_E_PNS_IF_FORMAT_PNVOLUME
Error while formatting PNVOLUME.
0xC0300033 TLR_E_PNS_IF_MOUNT_PNVOLUME
Error while mounting PNVOLUME.
0xC0300034 TLR_E_PNS_IF_INIT_REMOTE
Error during initialization of the remote resources of the stack.
0xC0300035 TLR_E_PNS_IF_ WARMSTART_CONFIG_REDUNDANT
Warmstart parameters are redundant. The stack was configured with DBM or packets.
0xC0300036 TLR_E_PNS_IF_ WARMSTART_PARAMETER
Incorrect warmstart parameter(s).
0xC0300037 TLR_E_PNS_IF_SET_APPL_STATE_READY
PNIO_set_appl_state_ready() returns error.
0xC0300038 TLR_E_PNS_IF_SET_DEV_STATE
PNIO_set_dev_state() returns error.
0xC0300039 TLR_E_PNS_IF_PROCESS_ALARM_SEND
PNIO_process_alarm_send() returns error.
0xC030003A TLR_E_PNS_IF_RET_OF_SUB_ALARM_SEND
PNIO_ret_of_sub_alarm_send() returns error.
0xC030003B TLR_E_PNS_IF_DIAG_ALARM_SEND
PNIO_diag_alarm_send() returns error.
0xC030003C TLR_E_PNS_IF_DIAG_GENERIC_ADD
PNIO_diag_generic_add() returns error.
0xC030003D TLR_E_PNS_IF_DIAG_GENERIC_REMOVE
PNIO_diag_generic_remove() returns error.
0xC030003E TLR_E_PNS_IF_DIAG_CHANNEL_ADD
PNIO_diag_channel_add() returns error.
0xC030003F TLR_E_PNS_IF_DIAG_CHANNEL_REMOVE
PNIO_diag_channel_remove() returns error.
0xC0300040 TLR_E_PNS_IF_EXT_DIAG_CHANNEL_ADD
PNIO_ext_diag_channel_add() returns error.
0xC0300041 TLR_E_PNS_IF_EXT_DIAG_CHANNEL_REMOVE
PNIO_ext_diag_channel_remove() returns error.
0xC0300042 TLR_E_PNS_IF_STATION_NAME_LEN
Parameter station name length is incorrect.
0xC0300043 TLR_E_PNS_IF_STATION_NAME
Parameter station name is incorrect.
0xC0300044 TLR_E_PNS_IF_STATION_TYPE_LEN
Parameter station type length is incorrect.
0xC0300045 TLR_E_PNS_IF_DEVICE_TYPE
Parameter device type is incorrect.
0xC0300046 TLR_E_PNS_IF_ORDER_ID

Parameter order id is incorrect.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview 345/390

Hexadecimal Value Definition

Description
0xC0300047 TLR_E_PNS_IF_INPUT_STATUS

Parameter input data status bytes length is incorrect.
0xC0300048 TLR_E_PNS_IF_OUTPUT_STATUS

Parameter output data status bytes length is incorrect.
0xC0300049 TLR_E_PNS_IF_ WATCHDOG_PARAMETER

Parameter watchdog timing is incorrect(must be >= 10).
0xC030004A TLR_E_PNS_IF_OUT_UPDATE

Parameter output data update timing is incorrect.
0xC030004B TLR_E_PNS_IF_IN_UPDATE

Parameter input data update timing is incorrect.
0xC030004C TLR_E_PNS_IF_IN_SIZE

Parameter input memory area size is incorrect.
0xC030004D TLR_E_PNS_IF_OUT_SIZE

Parameter output memory area size is incorrect.
0xC030004E TLR_E_PNS_IF_GLOBAL_RESOURCES

Unable to allocate memory for global access to local resources.
0xC030004F TLR_E_PNS_IF_DYNAMIC_CFG_PCK

Unable to allocate memory for dynamic configuration packet.
0xC0300050 TLR_E_PNS_IF_DEVICE_STOP

Unable to stop device.
0xC0300051 TLR_E_PNS_IF_DEVICE_ID

Parameter device id is incorrect.
0xC0300052 TLR_E_PNS_IF_VENDOR_ID

Parameter vendor id is incorrect.
0xC0300053 TLR_E_PNS_IF_SYS_START

Parameter system start is incorrect.
0xC0300054 TLR_E_PNS_IF_DYN_CFG_IO_LENGTH

The length of 10 data expected by the controller exceeds the limit specified in warmstart

parameters.
0xC0300055 TLR_E_PNS_IF_DYN_CFG_MOD_NUM

The count of the 10 modules expected by the controller exceeds the supported by the stack

count.
0xC0300056 TLR_E_PNS_IF_ACCESS_LOCAL_RSC

No global access to local resources.
0xC0300057 TLR_E_PNS_IF_PULL_PLUG

Plugging and pulling modules during creation of communication is not allowed.
0xC0300058 TLR_E_PNS_IF_AR_NUM

Maximum number of ARs is 1.
0xC0300059 TLR_E_PNS_IF_API_NUM

Only API = 0 is supported.
0xCO030005A TLR_E_PNS_IF_ALREADY_OPEN

Device is already opened.
0xC030005B TLR_E_PNS_IF_API_ADDED

Application is already added.
0xC030005C TLR_E_PNS_IF_CONFIG_MODE

Configuration modes should not be mixed(DBM-files,application,warmstart message).
0xC030005D TLR_E_PNS_IF_UNK_LED_MODE

Unknown LED mode.
0xC030005E TLR_E_PNS_IF_PHYSICAL_LINK

Physical link rate is less then 100 MBit.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview

346/390

Hexadecimal Value Definition
Description
0xC030005F TLR_E_PNS_IF_MAX_SLOT_SUBSLOT
Number of slots or subslots too big.
0xC0300060 TLR_E_PNS_IF_AR_REASON_MEM
AR error. Out of memory.
0xC0300061 TLR_E_PNS_IF_AR_REASON_FRAME
AR error. Add provider or consumer failed.
0xC0300062 TLR_E_PNS_IF_AR_REASON_MISS
AR error. Consumer missing.
0xC0300063 TLR_E_PNS_IF_AR_REASON_TIMER
AR error. CMI timeout.
0xC0300064 TLR_E_PNS_IF_AR_REASON_ALARM
AR error. Alarm open failed.
0xC0300065 TLR_E_PNS_IF_AR_REASON_ALSND
AR error. Alarm send confirmation failed.
0xC0300066 TLR_E_PNS_IF_AR_REASON_ALACK
AR error. Alarm acknowledge send confirmation failed.
0xC0300067 TLR_E_PNS_IF_AR_REASON_ALLEN
AR error. Alarm data too long.
0xC0300068 TLR_E_PNS_IF_AR_REASON_ASRT
AR error. Alarm indication error.
0xC0300069 TLR_E_PNS_IF_AR_REASON_RPC
AR error. RPC client call confirmation failed.
0xC030006A TLR_E_PNS_IF_AR_REASON_ABORT
AR error. Abort request.
0xC030006B TLR_E_PNS_IF_AR_REASON_RERUN
AR error. Re-Run.
0xC030006C TLR_E_PNS_IF_AR_REASON_REL
AR error. Release indication received.
0xC030006D TLR_E_PNS_IF_AR_REASON_PAS
AR error. Device deactivated.
0xC030006E TLR_E_PNS_IF_AR_REASON_RMV
AR error. Device/AR removed.
0xC030006F TLR_E_PNS_IF_AR_REASON_PROT
AR error. Protocol violation.
0xC0300070 TLR_E_PNS_IF_AR_REASON_NARE
AR error. NARE error.
0xC0300071 TLR_E_PNS_IF_AR_REASON_BIND
AR error. RPC-Bind error.
0xC0300072 TLR_E_PNS_IF_AR_REASON_CONNECT
AR error. RPC-Connect error.
0xC0300073 TLR_E_PNS_IF_AR_REASON_READ
AR error. RPC-Read error.
0xC0300074 TLR_E_PNS_IF_AR_REASON_WRITE
AR error. RPC-Write error.
0xC0300075 TLR_E_PNS_IF_AR_REASON_CONTROL
AR error. RPC-Control error.
0xC0300076 TLR_E_PNS_IF_AR_REASON_UNKNOWN
AR error. Unknown.
0xC0300077 TLR_E_PNS_IF_INIT_WATCHDOG

Watchdog initialization failed.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview 347/390

Hexadecimal Value Definition

Description
0xC0300078 TLR_E_PNS_IF_NO_PHYSICAL_LINK

The Device is not connected to a network.
0xC0300079 TLR_DPM_CYCLIC_IO_RW

Failed to copy from DPM or to DPM the cyclic 10 data.
0xC030007A TLR_E_PNS_IF_SUBMODULE

Submodule number is wrong.
0xC030007B TLR_E_PNS_IF_MODULE

Module number is wrong.
0xC030007C TLR_E_PNS_IF_NO_AR

The AR was closed or the AR handle is not valid.
0xC030007D TLR_E_PNS_IF_WRITE_REC_RES_TIMEOUT

Timeout while waiting for response to write_record_indication.
0xC030007E TLR_E_PNS_IF_UNREGISTERED_SENDER

The sender of the request in not registered with request PNS_IF_REGISTER_AP_REQ.
0xCO030007F TLR_E_PNS_IF_RECORD_HANDLE_INVALID

Unknown record handle.
0xC0300080 TLR_E_PNS_IF_REGISTER_AP

Another instance is registered at the moment.
0xC0300081 TLR_E_PNS_IF_UNREGISTER_AP

One instance cannot unregister another one.
0xC0300082 TLR_E_PNS_IF_CONFIG_DIFFER

The Must-configuration differs from the Is-configuration.
0xC0300083 TLR_E_PNS_IF_NO_COMMUNICATION

No communication processing.
0xC0300084 TLR_E_PNS_IF_BAD_PARAMETER

At least one parameter in a packet was wrong or/and did not meet the requirements.
0xC0300085 TLR_E_PNS_IF_AREA_OVERFLOW

Input or Output data requires more space than available.
0xC0300086 TLR_E_PNS_IF_ WRM_PCK_SAVE

Saving Warmstart Configuration for later use was not successful.
0xC0300087 TLR_E_PNS_IF_AR_REASON_PULLPLUG

AR error. Pull and Plug are forbidden after check.rsp and before in-data.ind.
0xC0300088 TLR_E_PNS_IF_AR_REASON_AP_RMV

AR error. AP has been removed.
0xC0300089 TLR_E_PNS_IF_AR_REASON_LNK_DWN

AR error. Link "down".
0xCO30008A TLR_E_PNS_IF_AR_REASON_MMAC

AR error. Could not register multicast-MAC.
0xC030008B TLR_E_PNS_IF_AR_REASON_SYNC

AR error. Not synchronized (Cannot start companion-AR).
0xC030008C TLR_E_PNS_IF_AR_REASON_TOPO

AR error. Wrong topology (Cannot start companion-AR).
0xC030008D TLR_E_PNS_IF_AR_REASON_DCP_NAME

AR error. DCP. Station Name changed.
0xC030008E TLR_E_PNS_IF_AR_REASON_DCP_RESET

AR error. DCP. Reset to factory-settings.
0xC030008F TLR_E_PNS_IF_AR_REASON_PRM

AR error. Cannot start companion-AR because a 0x8ipp submodule in the first AR /has appl-
ready-pending/ is locked/ is wrong or pulled/ .

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview 348/390
Hexadecimal Value Definition
Description
0xC0300090 TLR_E_PNS_IF_PACKET_MNGMNT
Packet management error.
0xC03000B1 TLR_E_PNS_IF_RESET_FACTORY_IND
A module was already plugged to the slot.
0xC03000B2 TLR_E_PNS_IF_MODULE_ALREADY_PLUGGED
Failed to init the OS adaptation layer.
0xC03000B3 TLR_E_PNS_IF_OSINIT
Failed to init the TCPIP adaptation layer.
0xC03000B4 TLR_E_PNS_IF_OSSOCKINIT
Failed to init the TCPIP adaptation layer.
0xC03000B5 TLR_E_PNS_IF_INVALID_NETMASK
Invalid subnetwork mask.
0xC03000B6 TLR_E_PNS_IF_INVALID_IP_ADDR
Invalid IP address.
0xC03000B7 TLR_E_PNS_IF_STA_STARTUP_PARAMETER
Erroneous Task start-up parameters.
0xC03000B8 TLR_E_PNS_IF_INIT_LOCAL
Failed to initialize the Task local resources.
0xC03000B9 TLR_E_PNS_IF_APP_CONFIG_INCOMPLETE
The configuration per packets is incomplete.
0xC03000BA TLR_E_PNS_IF_INIT_EDD
EDD Initialization failed.
0xC03000BB TLR_E_PNS_IF_DPM_NOT_ENABLED
DPM is not enabled.
0xC03000BC TLR_E_PNS_IF_READ_LINK_STATUS
Reading Link Status failed.
0xC03000BD TLR_E_PNS_IF_INVALID_GATEWAY
Invalid gateway address (not reachable with configured net mask).
0xC0300100 TLR_E_PNS_IF_PACKET_SEND_FAILED
Error while sending a packet to another task.
0xC0300101 TLR_E_PNS_IF_RESOURCE_OUT_OF_MEMORY
Insufficient memory to handle the request.
0xC0300102 TLR_E_PNS_IF_NO_APPLICATION_REGISTERED
No application to send the indication to is registered.
0xC0300103 TLR_E_PNS_IF_INVALID_SOURCE_ID
The host-application returned a packet with invalid (changed) SourcelD.
0xC0300104 TLR_E_PNS_IF_PACKET_BUFFER_FULL
The buffer used to store packets exchanged between host-application and stack is full.
0xC0300105 TLR_E_PNS_IF_PULL_NO_MODULE
Pulling the (sub)module failed because no module is plugged into the slot specified.
0xC0300106 TLR_E_PNS_IF_PULL_NO_SUBMODULE
Pulling the submodule failed because no submodule is plugged into the subslot specified.
0xC0300107 TLR_E_PNS_IF_PACKET_BUFFER_RESTORE_ERROR
The packet buffer storing packets exchanged between host-application and stack returned
an invalid packet.
0xC0300108 TLR_E_PNS_IF_DIAG_NO_MODULE
Diagnosis data not accepted because no module is plugged into the slot specified.
0xC0300109 TLR_E_PNS_IF_DIAG_NO_SUBMODULE

Diagnosis data not accepted because no submodule is plugged into the subslot specified.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview 349/390

Hexadecimal Value Definition
Description
0xC030010A TLR_E_PNS_IF_CYCLIC_EXCHANGE_ACTIVE
The services requested is not available while cyclic communication is running.
0xC030010B TLR_E_PNS_IF_FATAL_ERROR_CLB_ALREADY_REGISTERED
This fatal error callback function could not be registered because there is already a function
registered.
0xC030010C TLR_E_PNS_IF_ERROR_STACK_WARMSTART_CONFIGURATION
The stack did not accept the warmstart parameters.
0xC030010D TLR_E_PNS_IF_ERROR_STACK_MODULE_CONFIGURATION
The stack did not accept the module configuration packet.
0xC030010E TLR_E_PNS_IF_CHECK_IND_FOR_UNEXPECTED_MODULE
The stack sent a Check Indication for an unexpected module.
0xC030010F TLR_E_PNS_IF_CHECK_IND_FOR_UNEXPECTED_SUBMODULE
The stack sent a Check Indication for an unexpected submodule.
0xC0300110 TLR_E_PNS_DIAG_BUFFER_FULL
No more diagnosis records can be added to the stack because the maximum amount is
already reached.
0xC0300111 TLR_E_PNS_IF_CHECK_IND_FOR_UNEXPECTED_API
The stack sent a Check Indication for an unexpected API.
0xC0300112 TLR_E_PNS_IF_DPM_ACCESS_WITH_INVALID_OFFSET
The DPM shall be accessed with an invalid data offset.
0xC0300113 TLR_E_PNS_IF_DUPLICATE_INPUT_CR_INFO
The stack indicated to CR Info Indications with type input.
0xC0300114 TLR_E_PNS_IF_DUPLICATE_OUTPUT_CR_INFO
The stack indicated to CR Info Indications with type output.
0xC0300115 TLR_E_PNS_IF_FAULTY_CR_INFO_IND_RECEIVED
The stack indicated a faulty CR Info Indications.
0xC0300116 TLR_E_PNS_IF_CONFIG_RELOAD_RUNNING
The request cannot be executed because configuration reload respectively Channellnit is
running.
0xC0300117 TLR_E_PNS_IF_NO_MAC_ADDRESS_SET
There is no valid chassis MAC address set Without MAC address the stack will not work.
0xC0300118 TLR_E_PNS_IF_SET_PORT_MAC_NOT_POSSIBLE
The Port MAC addresses have to be set before sending Set-Configuration Request to the
stack.
0xC030011A TLR_E_PNS_IF_INVALID_MODULE_CONFIGURATION
Evaluating the module configuration failed.
0xC030011B TLR_E_PNS_IF_CONF_IO_LEN_TO_BIG
The sum of 10-data length exceeds the maximum allowed value.
0xC030011C TLR_E_PNS_IF_NO_MODULE_CONFIGURED
The module configuration does not contain at least one module.
0xC030011D TLR_E_PNS_IF_INVALID_SW_REV_PREFIX
The value of bSwRevisionPrefix is invalid.
0xC030011E TLR_E_PNS_IF_RESERVED_VALUE_NOT_ZERO
The value of usReserved it not zero.
0xC030011F TLR_E_PNS_IF_IDENTIFY_CMDEV_QUEUE_FAILED
Identifying the stack message queue CMDEYV failed.
0xC0300120 TLR_E_PNS_IF_CREATE_SYNC_QUEUE_FAILED
Creating the sync message queue failed.
0xC0300121 TLR_E_PNS_IF_CREATE_ALARM_LOW_QUEUE_FAILED
Creating the low alarm message queue failed.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview 350/390

Hexadecimal Value Definition
Description
0xC0300122 TLR_E_PNS_IF_CREATE_ALARM_HIGH_QUEUE_FAILED
Creating the high alarm message queue failed.
0xC0300123 TLR_E_PNS_IF_CFG_PACKET_TO_SMALL
While evaluating SetConfiguration packet the packet length was found smaller than amount
of configured modules needs.
0xC0300124 TLR_E_PNS_IF_FATAL_ERROR_OCCURRED
A fatal error occurred prior to this request. Therefore this request cannot be fulfilled.
0xC0300125 TLR_E_PNS_IF_SUBMODULE_NOT_IN_CYCLIC_EXCHANGE
The request could not be executed because the submodule is not in cyclic data exchange.
0xC0300126 TLR_E_PNS_IF_SERVICE_NOT_AVAILABLE_THROUGH_DPM
This service is not available through DPM.
0xC0300127 TLR_E_PNS_IF_INVALID_PARAMETER_VERSION
The version of parameters is invalid (most likely too old).
0xC0300128 TLR_E_PNS_IF_DATABASE_USAGE_IS_FORBIDDEN
The usage of database is forbidden by task’s startup parameters.
0xC0300129 TLR_E_PNS_IF_RECORD_LENGTH_TOO_BIG
The amount of record data is too big.
0xC030012A TLR_E_PNS_IF_IDENTIFY_LLDP_QUEUE_FAILED
Identifying the stack message queue LLDP failed.
0xC030012BL TLR_E_PNS_IF_INVALID_TOTAL_PACKET_LENGTH
SetConfiguration Requests total packet length is invalid.
0xC030012CL TLR_E_PNS_IF_APPLICATION_TIMEOUT
The application needed to much time to respond to an indication.
0xC030012DL TLR_E_PNS_IF_PACKET_BUFFER_INVALID_PACKET
The packet buffer storing packets exchanged between host-application and stack returned a
faulty packet.
0xC030012EL TLR_E_PNS_IF_NO_IO_IMAGE_CONFIGURATION_AVAILABLE
The request cannot be handled until a valid IO Image configuration is available.
0xC030012FL TLR_E_PNS_IF_IO_IMAGE_ALREADY_CONFIGURED
A valid 10 Image configuration is already available.
0xC0300130L TLR_E_PNS_IF_INVALID_PDEV_SUBSLOT
A submodule may only be plugged into a PDEV-subslot which does not exceed the number
of supported interfaces and port numbers.
0xC0300131L TLR_E_PNS_IF_NO_DAP_PRESENT
The module configuration does not contain a the Device Access Point DAP-submodule in
slot O subslot 1.
0xC0300123 TLR_E_PNS_IF_PLUG_SUBMOD_OUTPUT_SIZE_EXCEEDED
Plugging the submodule would exceed the maximum output data length.
(ulCompleteOutputSize of set configuration service)
0xC0300133 TLR_E_PNS_IF_PLUG_SUBMOD_INPUT_SIZE_EXCEEDED
Plugging the submodule would exceed the maximum input data length.
(ulCompletelnputSize of Set configuration service)
0xC0300134 TLR_E_PNS_IF_PLUG_SUBMOD_NO_MODULE_ATTACHED_TO_ADD_TO
No module attached to add the submodule to.
0xC0300135 TLR_E_PNS_IF_PLUG_SUBMOD_ALREADY_PLUGGED_THIS_SUBMOD
Submodule already plugged.
0xC0300136 TLR_E_PNS_IF_SETIOXS_INVALID_PROV_IMAGE
Invalid IOXS provider image.
0xC0300137 TLR_E_PNS_IF_SETIOXS_INVALID_CONS_IMAGE

Invalid IOXS consumer image.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview

Hexadecimal Value Definition
Description
0xC0300138 TLR_E_PNS_IF_INVALID_IOPS_MODE
Invalid IOPS mode.
0xC0300139 TLR_E_PNS_IF_INVALID_IOCS_MODE
Invalid IOCS mode.
0xCO030013A TLR_E_PNS_IF_INVALID_API
Invalid API.
0xC030013B TLR_E_PNS_IF_INVALID_SLOT
Invalid slot.
0xC030013C TLR_E_PNS_IF_INVALID_SUBSLOT
Invalid subslot.
0xC030013D TLR_E_PNS_IF_INVALID_CHANNEL_NUMBER
Invalid channel number.
0xC030013E TLR_E_PNS_IF_INVALID_CHANNEL_PROPERTIES
Invalid channel properties.
0xCO030013F TLR_E_PNS_IF_CHANNEL_ERRORTYPE_NOT_ALLOWED
Invalid channel errortype not allowed.
0xC0300140 TLR_E_PNS_IF_EXT_CHANNEL_ERRORTYPE_NOT_ALLOWED
Invalid channel EXT errortype not allowed.
0xC0300141 TLR_E_PNS_IF_INVALID_USER_STRUCT_IDENTIFIER
Invalid user struct identifier.
0xC0300142 TLR_E_PNS_IF_INVALID_SUBMODULE
Invalid submodule.
0xC0300143 TLR_E_PNS_IF_INVALID_IM_TYPE
Invalid IM type.
0xC0300144 TLR_E_PNS_IF_IDENTIFY_FODMI_QUEUE_FAILED
Failed to identify the FODMI Queue.
0xC0300145 TLR_E_PNS_IF_DPM_MAILBOX_OVERFLOW
The DPM Receive Mailbox Queue run out of space. Most likely the host did not fetch the
packets.
0xC0300A03 TLR_E_PNS_IF_CM_AR_REASON_MEM
AR Out of memory.
0xC0300A04 TLR_E_PNS_IF_CM_AR_REASON_FRAME
AR add provider or consumer failed.
0xC0300A05 TLR_E_PNS_IF_CM_AR_REASON_MISS
AR consumer DHT/WDT expired.
0xC0300A06 TLR_E_PNS_IF_CM_AR_REASON_TIMER
AR cmi timeout.
0xC0300A07 TLR_E_PNS_IF_CM_AR_REASON_ALARM
AR alarm-open failed.
0xC0300A08 TLR_E_PNS_IF_CM_AR_REASON_ALSND
AR alarm-send.cnf(-).
0xC0300A09 TLR_E_PNS_IF_CM_AR_REASON_ALACK
AR alarm-ack-send.cnf(-).
0xCO300A0A TLR_E_PNS_IF_CM_AR_REASON_ALLEN
AR alarm data too long.
0xC0300A0B TLR_E_PNS_IF_CM_AR_REASON_ASRT
AR alarm.ind(err).
0xCO0300A0C TLR_E_PNS_IF_CM_AR_REASON_RPC

AR rpc-client call.cnf(-).

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

351/390

© Hilscher, 2006-2017

Status/Error Codes Overview

352/390

Hexadecimal Value Definition
Description
0xC0300A0D TLR_E_PNS_IF_CM_AR_REASON_ABORT
AR abort.req.
0xCO0300A0E TLR_E_PNS_IF_CM_AR_REASON_RERUN
AR re-run aborts existing AR.
0xCO300A0F TLR_E_PNS_IF_CM_AR_REASON_REL
AR release.ind received.
0xC0300A10 TLR_E_PNS_IF_CM_AR_REASON_PAS
AR device deactivated.
0xC0300A11 TLR_E_PNS_IF_CM_AR_REASON_RMV
AR removed.
0xC0300A12 TLR_E_PNS_IF_CM_AR_REASON_PROT
AR protocol violation.
0xC0300A13 TLR_E_PNS_IF_CM_AR_REASON_NARE
AR name resolution error.
0xC0300A14 TLR_E_PNS_IF_CM_AR_REASON_BIND
AR RPC-Bind error.
0xC0300A15 TLR_E_PNS_IF_CM_AR_REASON_CONNECT
AR RPC-Connect error.
0xC0300A16 TLR_E_PNS_IF_CM_AR_REASON_READ
AR RPC-Read error.
0xC0300A17 TLR_E_PNS_IF_CM_AR_REASON_WRITE
AR RPC-Write error.
0xC0300A18 TLR_E_PNS_IF_CM_AR_REASON_CONTROL
AR RPC-Control error.
0xC0300A19 TLR_E_PNS_IF_CM_AR_REASON_PULLPLUG
AR forbidden pull or plug after check.rsp and before in-data.ind.
0xCO0300A1A TLR_E_PNS_IF_CM_AR_REASON_AP_RMV
AR AP removed.
0xC0300A1B TLR_E_PNS_IF_CM_AR_REASON_LNK_DWN
AR link down.
0xC0300A1C TLR_E_PNS_IF_CM_AR_REASON_MMAC
AR could not register multicast-MAC address.
0xC0300A1D TLR_E_PNS_IF_CM_AR_REASON_SYNC
Not synchronized (cannot start companion-ar).
0xCO300A1E TLR_E_PNS_IF_CM_AR_REASON_TOPO
Wrong topology (cannot start companion-ar).
O0xCO0300A1F TLR_E_PNS_IF_CM_AR_REASON_DCP_NAME
DCP, station-name changed.
0xC0300A20 TLR_E_PNS_IF_CM_AR_REASON_DCP_RESET
DCP, reset to factory-settings.
0xC0300A21 TLR_E_PNS_IF_CM_AR_REASON_PRM
0x8ipp submodule in the first AR has either an appl-ready-pending (erroneous
parameterization) or is locked (no parameterization) or is wrong or pulled (no
parameterization).
0xC0300A22 TLR_E_PNS_IF_CM_AR_REASON_IRDATA
No irdata record yet.
0xC0300A23 TLR_E_PNS_IF_CM_AR_REASON_PDEV
Ownership of PDEV.
0xC0300A24 TLR_E_PNS_IF_IDENTIFY_FODMI_QUEUE_FAILED

Identifying the stack message queue FODMI failed.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview 353/390

Hexadecimal Value Definition
Description

0xC0910001 TLR_E_IO_SIGNAL_COMMAND_INVALID
Invalid command received.

0xC0910002 TLR_E_10_SIGNAL_INVALID_SIGNAL_DIRECTION
The value of signal direction is invalid.

0xC0910003 TLR_E_10_SIGNAL_INVALID_SIGNAL_AMOUNT
The value of signal amount is invalid.

0xC0910004 TLR_E_IO_SIGNAL_INVALID_SIGNAL_TYPE
The value of signal type is invalid.

0xC0910005 TLR_E_10_SIGNAL_UNSUPPORTED_SIGNAL_TYPE

The value of signal type is unsupported.

Table 211: Status/Error Codes Overview

9.2 Status/Error Codes for CMCTL Task

Packet Status/Error

Hexadecimal Value Definition

Description
0x00000000 TLR_S_OK

Status ok.
0xCO00A0001 TLR_E_PNIO_CMCTL_COMMAND_INVALID

Received invalid command in CMCTL task.
0xC00A0002 TLR_E_PNIO_STATUS

Generic error code. See packets data-status code for details.
0xC00A0010 TLR_E_PNIO_CMCTL_INIT_PARAM_INVALID

Invalid parameter in CMCTL_Resourcelnit().
0xCO00A0011 TLR_E_PNIO_CMCTL_RESOURCE_LIMIT_EXCEEDED

No more CMCTL protocol machines possible.
0xC00A0012 TLR_E_PNIO_CMCTL_RESOURCE_OUT_OF_MEMORY

Insufficient memory for this request to CMCTL.
0xCO00A0013 TLR_E_PNIO_CMCTL_CLOSED

This CMCTL protocol machine was closed.
0xC00A0014 TLR_E_PNIO_CMCTL_STATE_CONFLICT

This request can not be served in current CMCTL state.
0xC00A0015 TLR_E_PNIO_CMCTL_CONFIG_PENDING

The state of CMCTL's management resource is pending.
0xCO00A0016 TLR_E_PNIO_CMCTL_CONFIG_STATE_INVALID

The state of CMCTL's management resource is invalid.
0xCO00A0017 TLR_E_PNIO_CMCTL_PACKET_OUT_OF_MEMORY

Insufficient memory to create a packet in CMCTL task.
0xC00A0018 TLR_E_PNIO_CMCTL_PACKET_SEND_FAILED

Error while sending a packet to another task in CMCTL.
0xC00A0019 TLR_E_PNIO_CMCTL_CONN_REQ_LEN_INVALID

The length of the Connect-Packet in CMCTL_Connect_req() is invalid.
0xCO0AO01A TLR_E_PNIO_CMCTL_NAME_LEN_INVALID

The length of the name for 10-Device does not match to the name in

CMCTL_Connect_req().
0xCO00A001B TLR_E_PNIO_CMCTL_BLKNUM_UNEXPECTED

The Connect-Confirmation contains an incorrect amount of blocks.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview 354/390

Hexadecimal Value

Definition

Description

0xCO0A001C

TLR_E_PNIO_CMCTL_BLKNUM_UNEXPECTED_MEMORY_FAULT

The Connect-Confirmation contains an incorrect amount of blocks but may be received
correctly in RPC-layer. CMCTL protocol-machine has not reserved enough memory for
the whole confirmation.

0xCOOA001D

TLR_E_PNIO_CMCTL_INVALID_FRAMEID_RECEIVED

The Connect-Response from 10-Device specified an invalid FramelD to use for 10-
Controllers OutputCR.

O0xCOOAOQO01E

TLR_E_PNIO_CMCTL_EMPTY_POOL_DETECTED
The packet pool of CMCTL is empty.

0xCO0A0020

TLR_E_PNIO_CMCTL_BLKTYPE_UNEXPECTED
The connect-confirmation contains an unexpected block.

0xC00A0021

TLR_E_PNIO_CMCTL_BLKTYPE_UNEXPECTED_INIT
CMCTL_Connect_req() expected an INIT-block that is missing.

0xC0O0A0022

TLR_E_PNIO_CMCTL_BLKTYPE_UNEXPECTED_IODW_REQ
CMCTL_RMWrite_req() expected a WriteReq-block that is missing.

0xCO0A0023

TLR_E_PNIO_CMCTL_BLKTYPE_UNEXPECTED_IODW_DATA
CMCTL_RMWrite_req() expected a WriteData-block that is missing.

0xCOOA0030

TLR_E_PNIO_CMCTL_BLKLEN_INVALID_INIT
INIT-block length for CMCTL_Connect_req() is invalid.

0xCO0A0031

TLR_E_PNIO_CMCTL_BLKLEN_INVALID_IODW_REQ
WriteReq-block's length for CMCTL_RMWrite_req() is invalid.

0xCOOA0032

TLR_E_PNIO_CMCTL_BLKLEN_INVALID_IODW_DATA
WriteData-block's length for CMCTL_RMWrite_req() is invalid.

0xCOOA0040

TLR_E_PNIO_CMCTL_INVALID_PM_INDEX
The index of CMCTL protocol-machine is invalid.

0xC00A0041

TLR_E_PNIO_CMCTL_INVALID_PM
The CMCTL protocol-machine corresponding to index is invalid.

0xCO0A0042

TLR_E_PNIO_CMCTL_INVALID_CMCTL_HANDLE
The handle to CMCTL protocol-machine is invalid.

0xCOOA0050

TLR_E_PNIO_CMCTL_DEVICE_NOT_RESPONDING
The 10-Device which shall be connected does not answer.

0xCO0A0051

TLR_E_PNIO_CMCTL_DUPLICATE_DEVICE_NAME_DETECTED

More than one 10-Device with the specified NameOfStation exists; a connection can not
be established.

0xCOOA0052

TLR_E_PNIO_CMCTL_DEVICE_IP_ADDRESS_ALREADY_IN_USE

The IP-address the controller shall use for the 10-Device is already in use by another
network device; a connection can not be established.

0xCO0AO0060

TLR_E_PNIO_CMCTL_RPC_CONNECT_FAILED

The Connect-Response of IO-Device contained an error code; a connection could not be
established.

0xCOOA0061

TLR_E_PNIO_CMCTL_RPC_WRITE_PARAM_FAILED

The Write_Param-Response of |0-Device contained an error code; a connection could
not be established.

0xCO0A0062

TLR_E_PNIO_CMCTL_RPC_WRITE_FAILED
The Write-Response of 10-Device contained an error code.

0xCO0A0063

TLR_E_PNIO_CMCTL_RPC_READ_FAILED
The Read-Response of IO-Device contained an error code.

0xCOOA0064

TLR_E_PNIO_CMCTL_TCP_IP_SHUTDOWN
The TCP/IP-Stack closed a socket needed for communication.

0xCO0A0065

TLR_E_PNIO_CMCTL_RPC_RESPONSE_TOO_SHORT
The RPC-Response received does not have the required minimum length.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview 355/390

Hexadecimal Value

Definition

Description

0xCO0AO0070

TLR_E_PNIO_CMCTL_AR_BLOCKTYPE

The expected configuration block for AR in CMCTL_RMConnect_req_LoadAr() is
missing.

0xCOOA0071

TLR_E_PNIO_CMCTL_AR_BLOCKLEN

The expected configuration block for AR in CMCTL_RMConnect_req_LoadAr() has an
invalid length.

0xCO0A0072

TLR_E_PNIO_CMCTL_AR_TYPE
The configuration block for AR in CMCTL_RMConnect_req_LoadAr() has an invalid type.

0xCOOA0073

TLR_E_PNIO_CMCTL_AR_UUID

The configuration block for AR in CMCTL_RMConnect_req_LoadAr() has an invalid
UuID.

0xCO0AO0074

TLR_E_PNIO_CMCTL_AR_PROPERTY

The configuration block for AR in CMCTL_RMConnect_req_LoadAr() has an invalid
network properties value.

0xCO0AO0075

TLR_E_PNIO_CMCTL_AR_REF_UNEXPECTED
The AR-Reference for CMCTL protocol-machine is invalid.

0xCOOA0076

TLR_E_PNIO_CMCTL_AR_UUID_COMP_FAILED
The UUID inside 10-Device's Connect-Confirmation is incorrect.

0xCO0AOQ077

TLR_E_PNIO_CMCTL_AR_KEY_COMP_FAILED
The session-key inside 10-Device's Connect-Confirmation is incorrect.

0xCO0A0078

TLR_E_PNIO_CMCTL_AR_MAC_COMP_FAILED
The MAC-address of I0-Device is incorrect.

0xCOOA0080

TLR_E_PNIO_CMCTL_ALCR_BLOCKTYPE

The expected configuration block for Alarm-CR in CMCTL_RMConnect_req_LoadAlcr()
is missing.

0xC0O0A0081

TLR_E_PNIO_CMCTL_ALCR_BLOCKLEN

The expected configuration block for Alarm-CR in CMCTL_RMConnect_req_LoadAlcr()
has an invalid length.

0xCOO0A0082

TLR_E_PNIO_CMCTL_ALCR_TYPE

The configuration block for Alarm-CR in CMCTL_RMConnect_req_LoadAlcr() has an
invalid type.

0xCO0A0083

TLR_E_PNIO_CMCTL_ALCR_PROPERTY

The configuration block for Alarm-CR in CMCTL_RMConnect_req_LoadAlcr() has an
invalid network properties value.

0xCO0A0084

TLR_E_PNIO_CMCTL_ALCR_RTA_FACTOR

The configuration block for Alarm-CR in CMCTL_RMConnect_req_LoadAlcr() has an
invalid RTA-factor.

0xCOOA0085

TLR_E_PNIO_CMCTL_ALCR_RTA_RETRY

The configuration block for Alarm-CR in CMCTL_RMConnect_req_LoadAlcr() has an
invalid value for RTA-retry.

0xCO0AO0090

TLR_E_PNIO_CMCTL_IOCR_BLOCKLEN

The expected configuration block for IOCR in CMCTL_RMConnect_req_Loadlocr() has
an invalid length.

0xCOOA0091

TLR_E_PNIO_CMCTL_IOCR_TYPE_UNSUPPORTED
The type of IOCR is unsupported.

0xCO0A0092

TLR_E_PNIO_CMCTL_IOCR_TYPE_UNKNOWN
The type of IOCR is unknown.

0xCOOA0093

TLR_E_PNIO_CMCTL_IOCR_RTCCLASS_UNSUPPORTED
The RTC-class is unsupported.

0xCOO0A0094

TLR_E_PNIO_CMCTL_IOCR_RTCCLASS_UNKNOWN
The RTC-class is unknown.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview 356/390

Hexadecimal Value

Definition

Description

0xCO0A0095

TLR_E_PNIO_CMCTL_IOCR_IFTYPE_UNSUPPORTED

The expected configuration block for IOCR in CMCTL_RMConnect_req_Loadlocr() has
an unsupported interface-type.

0xCOOA0096

TLR_E_PNIO_CMCTL_IOCR_SCSYNC_UNSUPPORTED

The expected configuration block for IOCR in CMCTL_RMConnect_req_Loadlocr() has
an unsupported value for SendClock.

0xCO0A0097

TLR_E_PNIO_CMCTL_IOCR_ADDRESS_UNSUPPORTED

The expected configuration block for IOCR in CMCTL_RMConnect_req_Loadlocr() has
an unsupported Address-Resolution.

0xCOOA0098

TLR_E_PNIO_CMCTL_IOCR_REDUNDANCY_UNSUPPORTED

The expected configuration block for IOCR in CMCTL_RMConnect_req_Loadlocr() has
an unsupported Media-Redundancy.

0xCO0A0099

TLR_E_PNIO_CMCTL_IOCR_REFERENCE
No IOCR could be found or created.

O0xCOOAOQ09A

TLR_E_PNIO_CMCTL_IOCR_OBJECT_IOD

The expected configuration block for IOCR in CMCTL_RMConnect_req_Loadlocr() does
not contain any I0-Data.

0xCOOA009B

TLR_E_PNIO_CMCTL_IOCR_OBJECT IOS

The expected configuration block for IOCR in CMCTL_RMConnect_req_Loadlocr() does
not contain any 10-Status.

0xCO0A009C

TLR_E_PNIO_CMCTL_IOCR_API

The expected configuration block for IOCR in CMCTL_RMConnect_req_Loadlocr() does
not contain any API.

0xCOOAO0AO

TLR_E_PNIO_CMCTL_EXPS_BLOCKLEN

The expected configuration block for Expected-Submodules in
CMCTL_RMConnect_req_LoadExps() has an invalid length.

O0xCOOAO0A1

TLR_E_PNIO_CMCTL_EXPS_API

The expected configuration block for Expected-Submodules in
CMCTL_RMConnect_req_LoadExps() does not contain any API.

0xCOOAO0A2

TLR_E_PNIO_CMCTL_EXPS_SUBMODULE

The expected configuration block for Expected-Submodules in
CMCTL_RMConnect_req_LoadExps() does not contain any submodules.

O0xCOOAOQO0A3

TLR_E_PNIO_CMCTL_EXPS_DATADESCRIPTION

The expected configuration block for Expected-Submodules in
CMCTL_RMConnect_req_LoadExps() does not contain the expected amount of data-
descriptions.

0xCOOCOO0AA

TLR_E_PNIO_CMCTL_ACYCLIC_REQ_FAILED_REMOTE

The acyclic service failed. The 10-Device answered with an error code which is contained
in confirmation packet.

0xCO0CO0AB

TLR_E_PNIO_CMCTL_ACYCLIC_REQ_FAILED_RPC

The acyclic service failed. The RPC-layer detected an error which is contained in
confirmation packet.

0xCOOCOOAC

TLR_E_PNIO_CMCTL_ACYCLIC_REQ_FAILED_INTERNAL
The acyclic service failed. An internal error occured.

Table 212: Status/Error Codes for CMCTL Task

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview

357/390

9.2.1 CMCTL-Task Diagnosis-Codes

Packet Status/Error

Hexadecimal Value Definition
Description
0x00000000 TLR_S OK
Status ok.
0xCO0AFO000 TLR_DIAG_E_CMCTL_TASK_RESOURCE_INIT_FAILED
Initializing CMCTL's task-resources failed.
O0xCO0AFO001 TLR_DIAG_E_CMCTL_TASK_CREATE_QUE_FAILED
Failed to create message-queue for CMCTL.
0xCO0AF002 TLR_DIAG_E_CMCTL_TASK_CREATE_SYNC_QUE_FAILED
Failed to create synchronous message-queue for CMCTL.
O0xCO0AF003 TLR_DIAG_E_CMCTL_TASK_RPC_INIT_FAILED
Failed to initialize CMCTL's local RPC-resources.
O0xCO0AF004 TLR_DIAG_E_CMCTL_TASK_IDENT_ACP_QUE_FAILED
Failed to get handle to ACP message-queue in CMCTL.
0xCO0AF005 TLR_DIAG_E_CMCTL_TASK_IDENT_MGT_QUE_ FAILED
Failed to get handle to MGT message-queue in CMCTL.
0xCO0AF006 TLR_DIAG_E_CMCTL_TASK_IDENT_RPC_QUE_ FAILED
Failed to get handle to RPC message-queue in CMCTL.
O0xCO0AFO007 TLR_DIAG_E_CMCTL_TASK_IDENT_TCP_QUE_FALIED

Failed to get handle to TCP/IP message-queue in CMCTL .

Table 213: CMCTL -Task Diagnosis-Codes

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview

358/390

9.3 Status/Error Codes for CM-Dev Task

Packet Status/Error

Hexadecimal Value Definition
Description
0x00000000 TLR_S OK
Status ok.
0xC00B0001 TLR_E_PNIO_CMDEV_COMMAND_INVALID
Received invalid command in CMDEV task.
0xC00B0010 TLR_E_PNIO_CMDEV_INIT_PARAM_INVALID
Invalid parameter in CMDEV_Resourcelnit().
0xC00B0011 TLR_E_PNIO_CMDEV_RESOURCE_LIMIT_EXCEEDED
No more CMDEV protocol machines possible.
0xC00B0012 TLR_E_PNIO_CMDEV_RESOURCE_OUT_OF_MEMORY
Insufficient memory for this request to CMDEV.
0xC00B0013 TLR_E_PNIO_CMDEV_CLOSED
This CMDEYV protocol machine was closed.
0xC00B0014 TLR_E_PNIO_CMDEV_STATE_CONFLICT
This request cannot be served in current CMDEV state.
0xC00B0015 TLR_E_PNIO_CMDEV_CONFIG_PENDING
The state of CMDEV's management resource is pending.
0xC00B0016 TLR_E_PNIO_CMDEV_CONFIG_STATE_INVALID
The state of CMDEV's management resource is invalid.
0xC00B0017 TLR_E_PNIO_CMDEV_PACKET_OUT_OF_MEMORY
Insufficient memory to create a packet in CMDEYV task.
0xC00B0018 TLR_E_PNIO_CMDEV_PACKET_SEND_FAILED
Error while sending a packet to another task in CMDEV.
0xC00B0019 TLR_E_PNIO_CMDEV_CONN_REQ_LEN_INVALID
The length of the Connect-Packet in CMDEV_Connect_req() is invalid.
0xCO0BO01A TLR_E_PNIO_CMDEV_NAME_LEN_INVALID
The length of the name for 10-Device does not match to the name in
CMDEV_Connect_req().
0xC00B001B TLR_E_PNIO_CMDEV_BLKNUM_UNEXPECTED
The Connect-Confirmation contains an incorrect amount of blocks.
0xC00B001C TLR_E_PNIO_CMDEV_BLKNUM_UNEXPECTED_MEMORY_FAULT
The Connect-Confirmation contains an incorrect amount of blocks but may be received
correctly in RPC-layer. CMDEYV protocol-machine has not reserved enough memory for
the whole confirmation.
0xC00B001D TLR_E_PNIO_CMDEV_INVALID_FRAMEID_RECEIVED
The Connect-Response from 10-Device specified an invalid FramelD to use for 10-
Controllers OutputCR.
0xCO0BO01F TLR_E_PNIO_CMDEV_EMPTY_POOL_DETECTED
The packet pool of CMDEV is empty.
0xC00B0020 TLR_E_PNIO_CMDEV_PACKET_WRONG_DEVICEHANDLE
0xC00B0021 TLR_E_PNIO_CMDEV_POINTER_INVALID
0xC00B0022 TLR_E_PNIO_CMDEV_FUNCTION_RETURN_FAILURE
0xC00B0023 TLR_E_PNIO_CMDEV_WAIT_FOR_PACKET_FAILED

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview 359/390
Hexadecimal Value Definition
Description
0xC00B0024 TLR_E_PNIO_CMDEV_ALPMI_ACTIVATE_FAILED
0xC00B0025 TLR_E_PNIO_CMDEV_BUILD_CONNECT_RSP_FAILED
0xC00B0026 TLR_E_PNIO_CMDEV_AP_ENTRY_NOT_FOUND
0xC00B0027 TLR_E_PNIO_CMDEV_TIMER_CREATE_FAILED
0xC00B0028 TLR_E_PNIO_CMDEV_ERROR_SEQUENCE
0xC00B0029 TLR_E_PNIO_CMDEV_INVALID_PLUG_REQUEST_PCK
0xC00B002A TLR_E_PNIO_CMDEV_INVALID_PULL_REQUEST_PCK
0xC00B002B TLR_E_PNIO_CMDEV_PLUG_SLOT_NOT_EXPECTED
0xC00B002C TLR_E_PNIO_CMDEV_PLUG_SUBSLOT_NOT_EXPECTED
0xC00B002D TLR_E_PNIO_CMDEV_RPC_PACKET_INVALID
0xC00BO002E TLR_E_PNIO_CMDEV_ALPMI_INIT_FAILED
Initializing the ALPMI state machine failed.
0xC00BO002F TLR_E_PNIO_CMDEV_CHANGE_BUS_STATE_FAILED
Changing the internal Bus state failed.
0xC00B0040 TLR_E_PNIO_CMDEV_INVALID_PM_INDEX
The index of CMDEYV protocol-machine is invalid.
0xC00B0041 TLR_E_PNIO_CMDEV_INVALID_PM
The CMDEYV protocol-machine corresponding to index is invalid.
0xC00B0042 TLR_E_PNIO_CMDEV_INVALID_CMDEV_HANDLE
The handle to CMDEV protocol-machine is invalid.
0xC00B0043 TLR_E_PNIO_CMDEV_SUBMODULE_NOT_IN_CYCLIC_DATA_EXCHANGE
The request can not be handled because the submodule is not contained in cyclic data
exchange.
0xC00B0050 TLR_E_PNIO_CMDEV_DEVICE_NOT_RESPONDING
The 10-Device which shall be connected does not answer.
0xC00B0051 TLR_E_PNIO_CMDEV_DUPLICATE_DEVICE_NAME_DETECTED
More than one 10-Device with the specified NameOfStation exists; a connection can not
be established.
0xC00B0052 TLR_E_PNIO_CMDEV_DEVICE_IP_ADDRESS_ALREADY_IN_USE
The IP-address the controller shall use for the 10-Device is already in use by another
network device; a connection cannot be established.
0xC00B0053 TLR_E_PNIO_CMDEV_TOO_MUCH_ALARM_DATA
The packet contains to much alarm data.
0xC00B0060 TLR_E_PNIO_CMDEV_RPC_CONNECT_FAILED
The Connect-Response of |0-Device contained an error code; a connection could not be
established.
0xC00B0061 TLR_E_PNIO_CMDEV_RPC_WRITE_PARAM_FAILED
The Write_Param-Response of 10-Device contained an error code; a connection could
not be established.
0xC00B0062 TLR_E_PNIO_CMDEV_RPC_WRITE_FAILED

The Write-Response of 10-Device contained an error code.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview 360/390

Hexadecimal Value Definition
Description

0xC00B0063 TLR_E_PNIO_CMDEV_RPC_READ_FAILED
The Read-Response of IO-Device contained an error code.

0xC00B0064 TLR_E_PNIO_CMDEV_TCP_IP_SHUTDOWN
The TCP/IP-Stack closed a socket needed for communication.

0xC00B0070 TLR_E_PNIO_CMDEV_AR_BLOCKTYPE

The expected configuration block for AR in CMDEV_RMConnect_req_LoadAr() is
missing.

0xC00B0071 TLR_E_PNIO_CMDEV_AR_BLOCKLEN

The expected configuration block for AR in CMDEV_RMConnect_req_LoadAr() has an
invalid length.

0xC00B0072 TLR_E_PNIO_CMDEV_AR_TYPE

The configuration block for AR in CMDEV_RMConnect_req_LoadAr() has an invalid
type.

0xC00B0073 TLR_E_PNIO_CMDEV_AR_UUID

The configuration block for AR in CMDEV_RMConnect_req_LoadAr() has an invalid
UuID.

0xC00B0074 TLR_E_PNIO_CMDEV_AR_PROPERTY
The configuration block for AR in CMDEV_RMConnect_req_LoadAr() has an invalid
network properties value.

0xC00B0075 TLR_E_PNIO_CMDEV_AR_REF_UNEXPECTED

The AR-Reference for CMDEV protocol-machine is invalid.
0xC00B0076 TLR_E_PNIO_CMDEV_AR_UUID_COMP_FAILED

The UUID inside 10-Device's Connect-Confirmation is incorrect.
0xC00B0077 TLR_E_PNIO_CMDEV_AR_KEY_COMP_FAILED

The session-key inside 10-Device's Connect-Confirmation is incorrect.
0xC00B0078 TLR_E_PNIO_CMDEV_AR_MAC_COMP_FAILED

The MAC-address of I0-Device is incorrect.
0xC00B0080 TLR_E_PNIO_CMDEV_INSERT_MODULE_ERROR
0xC00B0081 TLR_E_PNIO_CMDEV_INSERT_SUBMODULE_ERROR
0xC00B0082 TLR_E_PNIO_CMDEV_MAX_API_LIMIT_EXCEEDED
0xC00B0083 TLR_E_PNIO_CMDEV_API_ALREADY_ADDED
0xC00B0084 TLR_E_PNIO_CMDEV_SLOT_OUT_OF_RANGE
0xC00B0085 TLR_E_PNIO_CMDEV_SUBSLOT_OUT_OF_RANGE
0xC00B0086 TLR_E_PNIO_CMDEV_SUBSLOT_ALREADY_EXISTS
0xC00B0087 TLR_E_PNIO_CMDEV_PACKET_WRONG_API
0xC00B0088 TLR_E_PNIO_CMDEV_PACKET_WRONG_SLOT
0xC00B0089 TLR_E_PNIO_CMDEV_PACKET_WRONG_SUBSLOT
0xCO0BO08A TLR_E_PNIO_CMDEV_SLOT_ENTRY_NOT_FOUND
0xC00B008B TLR_E_PNIO_CMDEV_SLOT_ALREADY_EXISTS

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview 361/390

Hexadecimal Value Definition
Description
0xC00B008C TLR_E_PNIO_CMDEV_SUBSLOT_ENTRY_NOT_FOUND
0xC00B008D TLR_E_PNIO_CMDEV_FILTERED
A Checkindication shall not be forwarded to the user according to configuration.
0xC00B0090 TLR_E_PNIO_CMDEV_IOCR_BLOCKLEN
The expected configuration block for IOCR in CMDEV_RMConnect_req_Loadlocr() has
an invalid length.
0xC00B0091 TLR_E_PNIO_CMDEV_IOCR_TYPE_UNSUPPORTED
The type of IOCR is unsupported.
0xC00B0092 TLR_E_PNIO_CMDEV_IOCR_TYPE_UNKNOWN
The type of IOCR is unknown.
0xC00B0093 TLR_E_PNIO_CMDEV_IOCR_RTCCLASS_UNSUPPORTED
The RTC-class is unsupported.
0xC00B0094 TLR_E_PNIO_CMDEV_IOCR_RTCCLASS_UNKNOWN
The RTC-class is unknown.
0xC00B0095 TLR_E_PNIO_CMDEV_IOCR_IFTYPE_UNSUPPORTED
The expected configuration block for IOCR in CMDEV_RMConnect_req_Loadlocr() has
an unsupported interface-type.
0xC00B0096 TLR_E_PNIO_CMDEV_IOCR_SCSYNC_UNSUPPORTED
The expected configuration block for IOCR in CMDEV_RMConnect_req_Loadlocr() has
an unsupported value for SendClock.
0xC00B0097 TLR_E_PNIO_CMDEV_IOCR_ADDRESS_UNSUPPORTED
The expected configuration block for IOCR in CMDEV_RMConnect_req_Loadlocr() has
an unsupported Address-Resolution.
0xC00B0098 TLR_E_PNIO_CMDEV_IOCR_REDUNDANCY_UNSUPPORTED
The expected configuration block for IOCR in CMDEV_RMConnect_req_Loadlocr() has
an unsupported Media-Redundancy.
0xC00B0099 TLR_E_PNIO_CMDEV_IOCR_REFERENCE
No IOCR could be found or created.
0xCO0BO09A TLR_E_PNIO_CMDEV_IOCR_OBJECT_IOD
The expected configuration block for IOCR in CMDEV_RMConnect_req_Loadlocr() does
not contain any 10-Data.
0xC00B009B TLR_E_PNIO_CMDEV_IOCR_OBJECT_IOS
The expected configuration block for IOCR in CMDEV_RMConnect_req_Loadlocr() does
not contain any 10-Status.
0xC00B009C TLR_E_PNIO_CMDEV_IOCR_API
The expected configuration block for IOCR in CMDEV_RMConnect_req_Loadlocr() does
not contain any API.
0xC00B0100 TLR_E_PNIO_CMDEV_FRAME_ID_COUNT_INVALID
0xC00B0101 TLR_E_PNIO_CMDEV_FRAME_ID_OUT_OF_RANGE
0xC00B0102 TLR_E_PNIO_CMDEV_RT_CLASS_NOT_SUPPORTED
0xC00B0103 TLR_E_PNIO_CMDEV_INSERT_AR_ERROR
0xC00B0104 TLR_E_PNIO_CMDEV_MAX_AR_LIMIT_EXCEEDED
0xC00B0105 TLR_E_PNIO_CMDEV_AR_INVALID
0xC00B0106 TLR_E_PNIO_CMDEV_IOCR_INVALID

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview

362/390

Hexadecimal Value Definition
Description
0xC00B0107 TLR_E_PNIO_CMDEV_TYPE_LEN_INVALID
0xC00B0108 TLR_E_PNIO_CMDEV_INVALID_CTRL_REQUEST_BLOCK
0xC00B0109 TLR_E_PNIO_CMDEV_MODULECONFIG_PACKET_INVALID

Table 214: Status/Error Codes for CM-Dev Task

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview

363/390

9.3.1 CM-Dev-Task Diagnosis-Codes

Packet Status/Error

Hexadecimal Value Definition
Description
0x00000000 TLR_S_OK
Status ok.
0xCOO0BFO000 TLR_DIAG_E_CMDEV_TASK_RESOURCE_INIT_FAILED
Initializing CMDEV's task-resources failed.
0xCO0BFO001 TLR_DIAG_E_CMDEV_TASK_CREATE_QUE_FAILED
Failed to create message-queue for CMDEV.
0xCOO0BF002 TLR_DIAG_E_CMDEV_TASK_CREATE_SYNC_QUE_FAILED
Failed to create synchronous message-queue for CMDEV.
0xCOOBF003 TLR_DIAG_E_CMDEV_TASK_RPC_INIT_FAILED
Failed to initialize CMDEV's local RPC-resources.
0xCO0BF004 TLR_DIAG_E_CMDEV_TASK_IDENT_ACP_QUE_FALIED
Failed to get handle to ACP message-queue in CMDEV.
0xCOOBF005 TLR_DIAG_E_CMDEV_TASK_IDENT_MGT_QUE_FALIED
Failed to get handle to MGT message-queue in CMDEV.
0xCOOBFO006 TLR_DIAG_E_CMDEV_TASK_IDENT_RPC_QUE_FALIED
Failed to get handle to RPC message-queue in CMDEV.
0xCOO0BFO007 TLR_DIAG_E_CMDEV_TASK_IDENT_TCP_QUE_FALIED
Failed to get handle to TCP/IP message-queue in CMDEV.
0xCOO0BF008 TLR_DIAG_E_CMDEV_TASK_IDENT_DCP_QUE_FALIED
Failed to get handle to DCP message-queue in CMDEV .
0xCOOBF009 TLR_DIAG_E_CMDEV_TASK_IDENT_PNSIF_QUE_FALIED

Failed to get handle to PNSIF message-queue in CMDEV.

Table 215: CM-Dev-Task Diagnosis-Codes

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview

364/390

9.4 Status/Error Codes for EDD Task

Packet Status/Error

Hexadecimal Value Definition
Description
0x00000000 TLR_S_OK
Status ok.
0xCOOEO0001 TLR_E_PNIO_EDD_PROCESS_END
Return value of EDD_Scheduler_PreProcess().
0xCOOEO0002 TLR_E_PNIO_EDD_PARAM_INVALID_EDD

Invalid parameter for EDD_Scheduler_Start_req().

Table 216: Status/Error Codes for EDD Task

9.4.1 EDD-Task Diagnosis-Codes

Packet Status/Error

Hexadecimal Value Definition
Description
0x00000000 TLR_S_OK
Status ok.
0xCOOEF001 TLR_E_PNIO_EDD_COMMAND_INVALID
Received invalid command in EDD task.
0xCOOEF010 TLR_DIAG_E_EDD_TASK_INIT_LOCAL_FAILED

Failed to initialize EDD's local resources.

Table 217: EDD-Task Diagnosis-Codes

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview

365/390

9.5 Status/Error Codes for ACP Task

Packet Status/Error

Hexadecimal Value Definition
Description
0x00000000 TLR_S_OK
Status ok.
0xC0110010 TLR_E_PNIO_ACP_PHASE_OUT_OF_MEMORY
Insufficient memory to initialize ACP-phase.
0xC0110011 TLR_E_PNIO_ACP_PHASE_REDUCTION_RATIO
Invalid reduction-ratio (uiMaxRatio) in ACP_Phaselnit().
0xC0110012 TLR_E_PNIO_ACP_PHASE_SEND_CLOCK_FACTOR
Invalid sendClock-factor (uiScFact) in ACP_Phaselnit().
0xC0110013 TLR_E_PNIO_ACP_PHASE_FRAME_RESOURCES
Invalid parameter (uiMaxFrame) in ACP_Phaselnit().
0xC0110014 TLR_E_PNIO_ACP_PACKET_SEND_FAILED
Error sending a packet to another task in ACP task.
0xC0110015 TLR_E_PNIO_ACP_RESOURCE_OUT_OF_MEMORY
Insufficient memory in ACP task.
0xC0110016 TLR_E_PNIO_ACP_DRV_EDD_IOCTL_ERROR
0xC0110017 TLR_E_PNIO_SYNC_LOAD_IRT_DATA_ERROR
0xC0110018 TLR_E_PNIO_ACP_EMPTY_POOL_DETECTED
The packet pool of ACP is empty.
0xC0110020 TLR_E_PNIO_ALARM_PARAM_INVALID_INIT
Invalid parameter "uiMaxAlpm" in Alarm_Resourcelnit().
0xC0110021 TLR_E_PNIO_ALARM_RESOURCE_OUT_OF_MEMORY
Insufficient memory in Alarm_Resourcelnit().
0xC0110030 TLR_E_PNIO_ALPMR_PRIORITY_INVALID
Invalid alarm priority in request packet of ALPMR_AlarmAck_req().
0xC0110031 TLR_E_PNIO_ALPMR_RESOURCE_LIMIT_EXCEEDED
The requested number of ALPMR protocol machines exceeds the highest possible
number in ALPMR_Init_req().
0xC0110032 TLR_E_PNIO_ALPMR_RESOURCE_OUT_OF_MEMORY
Insufficient memory in ALPMR_Init_req().
0xC0110033 TLR_E_PNIO_ALPMR_HANDLE_INVALID
The ALPMR protocol-machine corresponding to the index in request packet is invalid.
0xC0110034 TLR_E_PNIO_ALPMR_STATE_INVALID
The ALPMR protocol-machine state is invalid for the current request.
0xC0110035 TLR_E_PNIO_ALPMR_PACKET_SEND_FAILED
Sending an Alarm-Indication-packet to another task failed in ALPMR.
0xC0110036 TLR_E_PNIO_ALPMR_PACKET_OUT_OF_MEMORY
Creating an Alarm-Indication-packet to be send to another task failed due to insufficient
memory.
0xC0110037 TLR_E_PNIO_ALPMR_RESOURCE_INDEX_INVALID
The index of ALPMR's protocol machine is invalid.
0xC0110040 TLR_E_PNIO_APMR_PARAM_INVALID_INIT
The parameter uiMaxApmr (maximum number of parallel APMR protocol-machines) in
APMR_Resourcelnit() is invalid.
0xC0110041 TLR_E_PNIO_APMR_RESOURCE_OUT_OF_MEMORY
Insufficient memory in APMR_Resourcelnit() to create the APMR protocol machines.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview

Hexadecimal Value Definition
Description
0xC0110042 TLR_E_PNIO_APMR_HANDLE_INVALID
The APMR protocol machine or its index is invalid.
0xC0110043 TLR_E_PNIO_APMR_STATE_INVALID
The state of APMR protocol machine is invalid for current request.
0xC0110044 TLR_E_PNIO_APMR_FRAME_SEND_FAILED
Sending an ACK or NAK in response to a received Alarm-PDU failed.
0xC0110050 TLR_E_PNIO_APMS_PARAM_INVALID_INIT
The parameter uiMaxApms (maximum number of parallel APMS protocol-machines) in
APMS_Resourcelnit() is invalid.
0xC0110051 TLR_E_PNIO_APMS_RESOURCE_OUT_OF_MEMORY
Insufficient memory in APMS_Resourcelnit() to create the APMS protocol machines.
0xC0110052 TLR_E_PNIO_APMS_HANDLE_INVALID
The APMS protocol machine or its index is invalid.
0xC0110053 TLR_E_PNIO_APMS_STATE_INVALID
The state of APMS protocol machine is invalid for current request.
0xC0110054 TLR_E_PNIO_APMS_FRAME_OUT_OF_MEMORY
APMS was not able to get an Edd_FrameBuffer for sending a packet.
0xC0110055 TLR_E_PNIO_APMS_FRAME_SEND_FAILED
An error occurred while APMS was trying to send an Edd_Frame.
0xC0110056 TLR_E_PNIO_APMS_TIMER_CREATE_FAILED
APMS_Activate_req() was not able to create a TLR-Timer.
0xC0110057 TLR_E_PNIO_APMS_TIMER_OUT_OF_MEMORY
Insufficient memory for APMS_Send_req_Data() to allocate a timer-indication packet.
0xC0110058 TLR_E_PNIO_APMS_INDEX_INVALID
0xC0110060 TLR_E_PNIO_CPM_PARAM_INVALID_INIT
The parameter uiMaxCpmRtcl and/or uiMaxCpmRtc2 of CPM_Resourcelnit() is invalid.
0xC0110061 TLR_E_PNIO_CPM_PARAM_INVALID_CLASS
The requested RTC-class is invalid in CPM_lInit_req().
0xC0110062 TLR_E_PNIO_CPM_RESOURCE_LIMIT_EXCEEDED
The requested amount of CPM protocol machines is higher than the highest possible
value.
0xC0110063 TLR_E_PNIO_CPM_RESOURCE_OUT_OF_MEMORY
Insufficient memory for current request in CPM.
0xC0110064 TLR_E_PNIO_CPM_HANDLE_INVALID
The handle to CPM protocol machine in invalid.
0xC0110065 TLR_E_PNIO_CPM_STATE_INVALID
The state of CPM protocol machine is incorrect for current request.
0xC0110066 TLR_E_PNIO_CPM_PHASE_LIMIT_EXCEEDED
Invalid phase found in Init-request-packet in CPM_lInit_req() or in
ACP_PhaseCpmAdd_req() or ACP_PhaseCpmRemove_req().
0xC0110067 TLR_E_PNIO_CPM_SEND_CLOCK_LIMIT_EXCEEDED
The SendClock-factor in Init-request-packet to CPM does not match the one in
ACP_Tasks' resources.
0xC0110069 TLR_E_PNIO_CPM_DATALEN_LIMIT_EXCEEDED
Packet size to receive is to big. Error is detected in CPM_Init_req().
0xC011006A TLR_E_PNIO_CPM_PACKET_SEND_FAILED
Error while sending a packet to another task in CPM.
0xC0110080 TLR_E_PNIO_PPM_PARAM_INVALID_INIT

The parameter "uiMaxPPMRtc1" and/or "uiMaxPPMRtc2" of PPM_Resourcelnit() is
invalid.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

366/390

© Hilscher, 2006-2017

Status/Error Codes Overview

Hexadecimal Value Definition
Description
0xC0110081 TLR_E_PNIO_PPM_PARAM_INVALID_CLASS
The requested RTC-class is invalid in PPM_Init_req().
0xC0110082 TLR_E_PNIO_PPM_RESOURCE_LIMIT_EXCEEDED
The requested amount of PPM protocol machines is higher than the highest possible
value.
0xC0110083 TLR_E_PNIO_PPM_RESOURCE_OUT_OF_MEMORY
Insufficient memory for current request in PPM.
0xC0110084 TLR_E_PNIO_PPM_HANDLE_INVALID
The handle to PPM protocol machine is invalid.
0xC0110085 TLR_E_PNIO_PPM_STATE_INVALID
The state of PPM protocol machine is incorrect for current request.
0xC0110086 TLR_E_PNIO_PPM_PHASE_LIMIT_EXCEEDED
Invalid phase found in Init-request-packet in PPM_Init_req() or in
ACP_PhasePPMAdd_req() or ACP_PhasePPMRemove_req().
0xC0110087 TLR_E_PNIO_PPM_SEND_CLOCK_LIMIT_EXCEEDED
The SendClock-factor in PPMs Init-request-packet does not match the one in
ACP_Tasks' resources.
0xC0110089 TLR_E_PNIO_PPM_DATALEN_LIMIT_EXCEEDED
Packet size to send is to big. Error is detected in PPM_lInit_req().
0xC011008A TLR_E_PNIO_PPM_RESOURCE_CLASS_INVALID
0xC0110090 TLR_E_PNIO_ALPMI_PRIORITY_INVALID
Invalid alarm priority in request packet of ALPMI_AlarmAck_req().
0xC0110091 TLR_E_PNIO_ALPMI_RESOURCE_LIMIT_EXCEEDED
The requested number of ALPMI protocol machines exceeds the highest possible
number in ALPMI_Init_req().
0xC0110092 TLR_E_PNIO_ALPMI_RESOURCE_OUT_OF_MEMORY
Insufficient memory in ALPMI_Init_req().
0xC0110093 TLR_E_PNIO_ALPMI_HANDLE_INVALID
The ALPMI protocol-machine corresponding to the index in request packet is invalid.
0xC0110094 TLR_E_PNIO_ALPMI_STATE_INVALID
The ALPMI protocol-machine state is invalid for the current request.
0xC0110095 TLR_E_PNIO_ALPMI_PACKET_SEND_FAILED
Sending an Alarm-Indication-packet to another task failed in ALPMI.
0xC0110096 TLR_E_PNIO_ALPMI_PACKET_OUT_OF_MEMORY

Creating an Alarm-Indication-packet to be send to another task failed due to insufficient
memory.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

367/390

© Hilscher, 2006-2017

Status/Error Codes Overview

368/390

0xC0110097

TLR_E_PNIO_ALPMI_RESOURCE_INDEX_INVALID
The index of ALPIR's protocol machine is invalid.

Table 218: Status/Error Codes for ACP Task

9.5.1 ACP-Task Diagnosis-Codes

Packet Status/Error

Hexadecimal Value Definition
Description

0x00000000 TLR_S OK
Status ok.

0xC011F001 TLR_E_PNIO_ACP_COMMAND_INVALID
Received invalid command in ACP task.

0xC011F010 TLR_DIAG_E_ACP_TASK_ACP_PHASE_INIT_FAILED
Failed to initialize ACP Phase.

0xC011F011 TLR_DIAG_E_ACP_TASK_ALARM_INIT_FAILED
Failed to initialize Alarm-machines.

0xC011F012 TLR_DIAG_E_ACP_TASK_APMR_INIT_FAILED
Failed to initialize APMR.

0xC011F013 TLR_DIAG_E_ACP_TASK_APMS_INIT_FAILED
Failes to initialize APMS.

0xC011F014 TLR_DIAG_E_ACP_TASK_CPM_INIT_FAILED
Failed to initialize CPM.

0xC011F015 TLR_DIAG_E_ACP_TASK_PPM_INIT_FAILED
Failed to initialize PPM.

0xC011F016 TLR_DIAG_E_ACP_TASK_CREATE_QUE_FAILED
Failed to create message-queue for ACP.

0xC011F017 TLR_DIAG_E_ACP_TASK_IDENT_EDD_FAILED
Failed to identify Drv_EDD.

0xC011F018 TLR_DIAG_E_ACP_TASK_IDENT_EDD_QUE_FAILED
Failed to get handle to EDD message-queue.

0xC011F019 TLR_DIAG_E_ACP_TASK_IDENT_DCP_QUE_FAILED
Failed to get handle to DCP message-queue.

0xCO011FO01A TLR_DIAG_E_ACP_TASK_IDENT_CMDEV_QUE_FAILED
Failed to get handle to CMDEV message-queue.

Table 219: ACP-Task Diagnosis-Codes

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview 369/390

9.6 Status/Error Codes for DCP Task

Packet Status/Error

Hexadecimal Value Definition
Description
0x00000000 TLR_S_OK
Status ok.
0xC012000A TLR_E_PNIO_DCP_PARAM_INVALID_EDD
Invalid parameter in Start-Edd-packet for DCP_StartEDD_req().
0xC0120010 TLR_E_PNIO_DCPMCR_INIT_PARAM_INVALID
Invalid parameter (uiMaxMcr) in DCPMCR_Resourcelnit().
0xC0120011 TLR_E_PNIO_DCPMCR_INIT_OUT_OF_MEMORY
Insufficient memory to initialize DCPMCR protocol machines in DCPMCR_Resourcelnit().
0xC0120012 TLR_E_PNIO_DCPMCR_RESOURCE_LIMIT_EXCEEDED
The index of DCPMCR's protocol machine is invalid.
0xC0120013 TLR_E_PNIO_DCPMCR_RESOURCE_OUT_OF_MEMORY
Insufficient memory for request in DCPMCR_Activate_req().
0xC0120014 TLR_E_PNIO_DCPMCR_RESOURCE_STATE_INVALID
The state of DCPMCR protocol machine is incorrect for current request.
0xC0120015 TLR_E_PNIO_DCPMCR_RESOURCE_HANDLE_INVALID
The handle to DCPMCR protocol machine in invalid.
0xC0120016 TLR_E_PNIO_DCPMCR_TIMER_CREATE_FAILED
DCPMCR_Activate_req() was unable to create a TLR-timer.
0xC0120017 TLR_E_PNIO_DCPMCR_TIMER_OUT_OF_MEMORY
Insufficient memory for DCPMCR_Identify_ind() to allocate a timer-indication packet.
0xC0120018 TLR_E_PNIO_DCPMCR_PACKET_OUT_OF_MEMORY
Insufficient memory to allocate a packet to be send to another task in DCPMCR.
0xC0120019 TLR_E_PNIO_DCPMCR_PACKET_SEND_FAILED
Error while sending a packet to another task in DCPMCR.
0xC012001A TLR_E_PNIO_DCPMCR_FRAME_OUT_OF_MEMORY
DCPMCR was not able to get an Edd_FrameBuffer for sending a packet.
0xC012001B TLR_E_PNIO_DCPMCR_FRAME_SEND_FAILED
An error occurred while DCPMCR was trying to send an Edd_Frame.
0xC012001C TLR_E_PNIO_DCPMCR_WAIT_ACK
DCPMCR could not be closed because it is still waiting for an ACK.
0xC012001D TLR_E_PNIO_DCPMCR_TASK_RES_ADDRESS
DCPMCR: Invalid parameter (task resources block address) while handling DCP Identify
indication.
0xC012001E TLR_E_PNIO_DCPMCR_EDD_FRAME_ADDRESS
DCPMCR: Invalid parameter (EDD frame address) while handling DCP Identify
indication.
0xC012001F TLR_E_PNIO_DCPMCR_MCR_ADDRESS
DCPMCR: Invalid parameter (DCPMCR state machine address) while handling DCP
Identify indication.
0xC0120020 TLR_E_PNIO_DCPMCR_RMPM_ADDRESS
DCPMCR: Invalid parameter (RMPM state machine address) while handling DCP Identify
indication.
0xC0120021 TLR_E_PNIO_DCP_EMPTY_POOL_DETECTED
The packet pool of DCP is empty.
0xC0120100 TLR_E_PNIO_DCPMCS_INIT_PARAM_INVALID

Invalid parameter (uiMaxMcs) in DCPMCS_Resourcelnit().

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview 370/390

Hexadecimal Value Definition

Description
0xC0120101 TLR_E_PNIO_DCPMCS_INIT_OUT_OF_MEMORY

Insufficient memory to initialize DCPMCS protocol machines in DCPMCS_Resourcelnit().
0xC0120102 TLR_E_PNIO_DCPMCS_RESOURCE_LIMIT_EXCEEDED

There are too many outstanding DCPMCS requests. New requests will not be accepted.
0xC0120103 TLR_E_PNIO_DCPMCS_RESOURCE_OUT_OF_MEMORY

Insufficient memory for request in DCPMCS_Activate_req().
0xC0120104 TLR_E_PNIO_DCPMCS_RESOURCE_STATE_INVALID

The state of DCPMCS protocol machine is incorrect for current request.
0xC0120105 TLR_E_PNIO_DCPMCS_RESOURCE_HANDLE_INVALID

The handle to DCPMCS protocol machine in invalid.
0xC0120106 TLR_E_PNIO_DCPMCS_TIMER_CREATE_FAILED

DCPMCS_Activate_req() was unable to create a TLR-timer.
0xC0120107 TLR_E_PNIO_DCPMCS_TIMER_OUT_OF_MEMORY

Insufficient memory for DCPMCS_Identify_req() to allocate a timer-indication packet.
0xC0120108 TLR_E_PNIO_DCPMCS_PACKET_OUT_OF_MEMORY

Insufficient memory to allocate a packet to be send to another task in DCPMCS.
0xC0120109 TLR_E_PNIO_DCPMCS_PACKET_SEND_FAILED

Error while sending a packet to another task in DCPMCS.
0xC012010A TLR_E_PNIO_DCPMCS_FRAME_OUT_OF_MEMORY

DCPMCS was not able to get an Edd_FrameBuffer for sending a packet.
0xC012010B TLR_E_PNIO_DCPMCS_FRAME_SEND_FAILED

An error occurred while DCPMCS was trying to send an Edd_Frame.
0xC0120200 TLR_E_PNIO_DCPUCR_INIT_PARAM_INVALID

Invalid parameter (uiMaxUcr) in DCPUCR_Resourcelnit().
0xC0120201 TLR_E_PNIO_DCPUCR_INIT_OUT_OF_MEMORY

Insufficient memory to initialize DCPUCR protocol machines in DCPUCR_Resourcelnit().
0xC0120202 TLR_E_PNIO_DCPUCR_RESOURCE_LIMIT_EXCEEDED

The index of DCPUCR's protocol machine is invalid.
0xC0120203 TLR_E_PNIO_DCPUCR_RESOURCE_OUT_OF_MEMORY

Insufficient memory for request in DCPUCR_Activate_req().
0xC0120204 TLR_E_PNIO_DCPUCR_RESOURCE_STATE_INVALID

The state of DCPUCR protocol machine is incorrect for current request.
0xC0120205 TLR_E_PNIO_DCPUCR_RESOURCE_HANDLE_INVALID

The handle to DCPUCR protocol machine in invalid.
0xC0120206 TLR_E_PNIO_DCPUCR_TIMER_CREATE_FAILED

DCPUCR_Activate_req() was unable to create a TLR-timer.
0xC0120207 TLR_E_PNIO_DCPUCR_TIMER_OUT_OF_MEMORY

Insufficient memory to allocate a timer-indication packet.
0xC0120208 TLR_E_PNIO_DCPUCR_PACKET_OUT_OF_MEMORY

Insufficient memory to allocate a packet to be send to another task in DCPUCR.
0xC0120209 TLR_E_PNIO_DCPUCR_PACKET_SEND_FAILED

Error while sending a packet to another task in DCPUCR.
0xC012020A TLR_E_PNIO_DCPUCR_FRAME_OUT_OF_MEMORY

DCPUCR was not able to get an Edd_FrameBuffer for sending a packet.
0xC012020B TLR_E_PNIO_DCPUCR_FRAME_SEND_FAILED

An error occurred while DCPUCR was trying to send an Edd_Frame.
0xC012020C TLR_E_PNIO_DCPUCR_SERVICE_INVALID

The DCP-command of received response does not match the outstanding request in

DCPUCR.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview

Hexadecimal Value Definition

Description
0xC012020D TLR_E_PNIO_DCPUCR_WAIT_ACK

DCPUCR could not be closed because it is still waiting for an ACK.
0xC0120300 TLR_E_PNIO_DCPUCS_INIT_PARAM_INVALID

Invalid parameter (uiMaxUcs) in DCPUCS_Resourcelnit().
0xC0120301 TLR_E_PNIO_DCPUCS_INIT_OUT_OF_MEMORY

Insufficient memory to initialize DCPUCS protocol machines in DCPUCS_Resourcelnit().
0xC0120302 TLR_E_PNIO_DCPUCS_RESOURCE_LIMIT_EXCEEDED

There are too many outstanding DCPUCS requests. New requests will not be accepted.
0xC0120303 TLR_E_PNIO_DCPUCS_RESOURCE_OUT_OF_MEMORY

Insufficient memory for request in DCPUCS_Activate_req().
0xC0120304 TLR_E_PNIO_DCPUCS_RESOURCE_STATE_INVALID

The state of DCPUCS protocol machine is incorrect for current request.
0xC0120305 TLR_E_PNIO_DCPUCS_RESOURCE_HANDLE_INVALID

The handle to DCPUCS protocol machine in invalid.
0xC0120306 TLR_E_PNIO_DCPUCS_TIMER_CREATE_FAILED

DCPUCS_Activate_req() was unable to create a TLR-timer.
0xC0120307 TLR_E_PNIO_DCPUCS_TIMER_OUT_OF_MEMORY

Insufficient memory for DCPUCS_DataSend_req() to allocate a timer-indication packet.
0xC0120308 TLR_E_PNIO_DCPUCS_PACKET_OUT_OF_MEMORY

Insufficient memory to allocate a packet to be send to another task in DCPUCS.
0xC0120309 TLR_E_PNIO_DCPUCS_PACKET_SEND_FAILED

Error while sending a packet to another task in DCPUCS.
0xC012030A TLR_E_PNIO_DCPUCS_FRAME_OUT_OF_MEMORY

DCPUCS was not able to get an Edd_FrameBuffer for sending a packet.
0xC012030B TLR_E_PNIO_DCPUCS_FRAME_SEND_FAILED

An error occurred while DCPUCS was trying to send an Edd_Frame.
0xC012030C TLR_E_PNIO_DCPUCS_FRAME_TIMEOUT

DCPUCS did not get a response to an Edd_Frame send .
0xC0120320 TLR_E_PNIO_DCPUCS_DCP_OPTION_UNSUPPORTED

The DCP option to set is not supported by |0-Device.
0xC0120321 TLR_E_PNIO_DCPUCS_DCP_SUBOPTION_UNSUPPORTED

The DCP suboption to set is not supported by 10-Device.
0xC0120022 TLR_E_PNIO_DCPUCS_DCP_SUBOPTION_NOT_SET

The DCP suboption to set was not set inside |O-Device.
0xC0120023 TLR_E_PNIO_DCPUCS_DCP_RESOURCE_ERROR

An internal resource error occured in |0-Device while performing a DCP request.
0xC0120024 TLR_E_PNIO_DCPUCS_DCP_SET_IMPOSSIBLE_LOCAL_REASON

The DCP (sub)option could not be set inside 10-Device for I0-Device internal reasons.
0xC0120025 TLR_E_PNIO_DCPUCS_DCP_SET_IMPOSSIBLE_WHILE_OPERATION

The DCP (sub)option could not be set inside 10-Device because 10-Device is in
operation.

Table 220: Status/Error Codes for DCP Task

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

371/390

© Hilscher, 2006-2017

Status/Error Codes Overview

372/390

9.6.1 DCP-Task Diagnosis-Codes

Packet Status/Error

Hexadecimal Value Definition
Description

0x00000000 TLR_S OK
Status ok.

0xC012F001 TLR_E_PNIO_DCP_COMMAND_INVALID
Received invalid command in DCP task.

0xC012F010 TLR_DIAG_E_DCP_TASK_UCS_RESOURCE_INIT_FAILED
Failed to initialize DCPUCS.

0xC012F011 TLR_DIAG_E_DCP_TASK_UCR_RESOURCE_INIT_FAILED
Failed to initialize DCPUCR.

0xC012F012 TLR_DIAG_E_DCP_TASK_MCS_RESOURCE_INIT_FAILED
Failed to initialize DCPMCS.

0xC012F013 TLR_DIAG_E_DCP_TASK_MCR_RESOURCE_INIT_FAILED
Failed to initialize DCPMCR.

0xC012F014 TLR_DIAG_E_DCP_TASK_CREATE_QUE_FAILED
Failed to create message-queue for DCP task.

Table 221: DCP-Task Diagnosis-Codes

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview

9.7 Status/Error Codes for MGT Task

Packet Status/Error

Hexadecimal Value Definition

Description
0x00000000 TLR_S_OK

Status ok.
0xC0130001 TLR_E_PNIO_MGT_PACKET_SEND_FAILED

ACP_EDDStartDCP_req() was unable to send request packet to DCP-Task.
0xC0130002 TLR_E_PNIO_MGT_WAIT_FOR_PACKET_FAILED
0xC0130003 TLR_E_PNIO_MGT_CMDEV_HANDLE_INVALID
0xC0130004 TLR_E_PNIO_MGT_MAPPER_REGISTER_ERROR
0xC0130005 TLR_E_PNIO_MGT_SERVER_REGISTER_ERROR
0xC0130006 TLR_E_PNIO_MGT_OBJECT_REGISTER_ERROR
0xC0130007 TLR_E_PNIO_MGT_CLIENT_REGISTER_ERROR
0xC0130008 TLR_E_PNIO_MGT_OPCODE_UNKNOWN
0xC0130009 TLR_E_PNIO_MGT_RPCCLIENT_HANDLE_INVALID
0xC013000A TLR_E_PNIO_MGT_OBJECT_UUID_NOT_FOUND
0xC013000B TLR_E_PNIO_MGT_ARUUID_NOT_FOUND
0xC013000C TLR_E_PNIO_MGT_INVALID_PORT_NUMBER
0xC013000D TLR_E_PNIO_MGT_DRV_EDD_IOCTL_ERROR
0xC013000E TLR_E_PNIO_MGT_INVALID_SESSION_KEY
0xC013000F TLR_E_PNIO_MGT_TARGET_UUID_NOT_NIL
0xC0130010 TLR_E_PNIO_NRPM_PARAM_INVALID_INIT

Invalid parameter (uiMaxNrpm) in NRPM_Resourcelnit().
0xC0130011 TLR_E_PNIO_NRPM_HANDLE_INVALID

The handle to NRPM protocol machine in invalid.
0xC0130012 TLR_E_PNIO_NRPM_STATE_INVALID

The state of NRPM protocol machine is invalid.
0xC0130013 TLR_E_PNIO_NRPM_IDENTIFY_FLAG_INVALID

The identify-flag in NRPM_Init_req() is invalid.
0xC0130014 TLR_E_PNIO_NRPM_RESOURCE_LIMIT_EXCEEDED

The requested number of NRPM protocol machines exceeds the highest possible

number in NRPM_Init_req().
0xC0130015 TLR_E_PNIO_NRPM_RESOURCE_OUT_OF_MEMORY

Insufficient memory in NRPM_Init_req().
0xC0130016 TLR_E_PNIO_NRPM_PACKET_SEND_FAILED

Error while sending a packet to another task in NRPM.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

373/390

© Hilscher, 2006-2017

Status/Error Codes Overview

Hexadecimal Value Definition
Description
0xC0130017 TLR_E_PNIO_NRPM_PACKET_OUT_OF_MEMORY
Insufficient memory to allocate a packet in NRPM.
0xC0130018 TLR_E_PNIO_NRPM_DCP_TYPE_INVALID
Received request with invalid type of DCP request in NRPM.
0xC0130019 TLR_E_PNIO_NRPM_NAME_OF_STATION_INVALID
The requested NameOfStation is invalid. Either it has an invalid length or it contains
invalid characters.
0xC013001A TLR_E_PNIO_NRPM_DCP_SET_ERROR
The requested DCP Set operation failed.
0xC013001B TLR_E_PNIO_NRPM_DEVICE_IP_ADDRESS_ALREADY_IN_USE
The IP-address the controller shall set for the 10-Device is already in use by another
network device.
0xC01300F0 TLR_E_PNIO_MGT_EMPTY_POOL_DETECTED
The packet pool of MGT is empty.
0xC01300F1 TLR_E_PNIO_MGT_INVALID_DEV_INDEX
The index of the device is invalid.
0xC0130101 TLR_E_PNIO_RMPM_HANDLE_INVALID
The handle to RMPM is invalid.
0xC0130102 TLR_E_PNIO_RMPM_STATE_INVALID
The state of RMPM is invalid for current request.
0xC0130103 TLR_E_PNIO_RMPM_STATE_CLOSING
The state of RMPM is closed
0xC0130104 TLR_E_PNIO_RMPM_RESOURCE_LIMIT_EXCEEDED
The number of RMPM state-machines is to high.
0xC0130105 TLR_E_PNIO_RMPM_RESOURCE_OUT_OF_MEMORY
Insufficient memory to fulfill the current request in RMPM.
0xC0130106 TLR_E_PNIO_RMPM_PACKET_SEND_FAILED
Error while sending a packet to another task in RMPM.
0xC0130107 TLR_E_PNIO_RMPM_PACKET_OUT_OF_MEMORY
Insufficient memory to allocate a packet in RMPM.
0xC0130108 TLR_E_PNIO_RMPM_ROLE_UNSUPPORTED
The parameter "role" is unsupported in RMPM_Init_req_ParameterRole().
0xC0130109 TLR_E_PNIO_RMPM_ROLE_UNKNOWN
The parameter "role" is unknown in RMPM_Init_req_ParameterRole() .
0xC013010A TLR_E_PNIO_RMPM_ROLE_IN_USE
The parameter "role" is already in use in RMPM_Init_req_ParameterRole() .
0xC013010B TLR_E_PNIO_RMPM_CONFIG_SEQUENCE
Incorrect sequence of configuration in RMPM_ConfigSet_req().
0xC013010C TLR_E_PNIO_RMPM_CONFIG_INVALID_VENDOR_ID
Incorrect configuration of Vendor-ID in RMPM_ConfigSet_req().
0xC013010D TLR_E_PNIO_RMPM_CONFIG_INVALID_NAME
Incorrect name of station in RMPM_ConfigSet_req().
0xC013010E TLR_E_PNIO_RMPM_CONFIG_INVALID_TYPE
Incorrect name of type in RMPM_ConfigSet_req().
0xC0130110 TLR_E_PNIO_RMPM_DUPLICATE_NAME_OF_STATION
The NameOfStation of IO-Controller is in use by another network device.
0xC0130111 TLR_E_PNIO_RMPM_DUPLICATE_IP
The IP-address the IO-Controller shall use is in use by another network device.
0xC0130112 TLR_E_PNIO_RMPM_RPC_PACKET_INVALID

The packet length of an RPC-packet received is invalid (most likely too short).

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

374/390

© Hilscher, 2006-2017

Status/Error Codes Overview

375/390

Hexadecimal Value Definition
Description
0xC0130113 TLR_E_PNIO_RMPM_DCP_PACKET_INVALID
The packet length of an DCP-packet received is invalid (most likely too short).
0xC0130120 TLR_E_PNIO_RMPM_INVALID_IP_ADDRESS
The IP address is invalid.
0xC0130121 TLR_E_PNIO_RMPM_INVALID_NETMASK
The network mask is invalid.
0xC0130122 TLR_E_PNIO_RMPM_INVALID_GATEWAY
The gateway address is invalid.
0xC0130200 TLR_E_PNIO_NRMC_PARAM_INVALID_INIT
0xC0130201 TLR_E_PNIO_NRMC_HANDLE_INVALID
The handle to NRMC is invalid.
0xC0130202 TLR_E_PNIO_NRMC_STATE_INVALID
The state of NRMC is invalid for current request.
0xC0130203 TLR_E_PNIO_NRMC_IDENTIFY_FLAG_INVALID
0xC0130204 TLR_E_PNIO_NRMC_RESOURCE_LIMIT_EXCEEDED
The number of NRMC state-machines is too high.
0xC0130205 TLR_E_PNIO_NRMC_RESOURCE_OUT_OF_MEMORY
Insufficient memory to fulfill the current request in NRMC.
0xC0130206 TLR_E_PNIO_NRMC_PACKET_SEND_FAILED
Error while sending a packet to another task in NRMC.
0xC0130207 TLR_E_PNIO_NRMC_PACKET_OUT_OF_MEMORY
Insufficient memory to allocate a packet in NRMC.
0xC0130208 TLR_E_PNIO_NRMC_DCP_TYPE_INVALID

Table 222: Status/Error Codes for MGT Task

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Status/Error Codes Overview

9.7.1

Packet Status/Error

MGT-Task Diagnosis-Codes

Hexadecimal Value Definition
Description

0x00000000 TLR_S OK
Status ok.

0xC013F001 TLR_E_PNIO_MGT_COMMAND_INVALID
Received invalid command in MGT task.

0xC013F010 TLR_DIAG_E_MGT_TASK_RMPM_RESOURCE_INIT_FAILED
Failed to initialize RMPM.

0xC013F011 TLR_DIAG_E_MGT_TASK_NRPM_RESOURCE_INIT_FAILED
Failed to initialize NRPM.

0xC013F012 TLR_DIAG_E_MGT_TASK_CREATE_QUE_FAILED
Failed to create message-queue for MGT task.

0xC013F013 TLR_DIAG_E_MGT_TASK_IDENT_TCPUDP_QUE_FAILED
Failed to get handle to TCP/IP task in MGT task.

0xC013F014 TLR_DIAG_E_MGT_TASK_IDENT_DCP_QUE_FAILED
Failed to get handle to DCP task in MGT task.

0xC013F015 TLR_DIAG_E_MGT_TASK_IDENT_EDD_FAILED
Failed to identify Drv_Edd imp MGT task.

0xC013F016 TLR_DIAG_E_MGT_TASK_IDENT_RPC_QUE_FAILED

Failed to get handle to RPC task in MGT task.

Table 223: MGT-Task Diagnosis-Codes

9.8 Status/Error Codes for FODMI-Task

0xC0960001 TLR_E_FODMI_TASK_COMMAND_INVALID
Command not valid.

0xC0960002 TLR_DIAG_E_FODMI_TASK_INIT_LOCAL_CREATE_QUE_FAILED
Failure at create que in init local.

0xC0960003 TLR_DIAG_E_FODMI_TASK_INIT_REMOTE_IDENT_APPLICATION_QUE_FAILED
Failure identifie the application queue.

0xC0960004 TLR_DIAG_E_FODMI_TASK_INIT_EDD_FAILED

Failure to identify the application queue.

Table 224: Status/Error Codes Overview

9.9 Status/Error Codes for RPC-Task

Packet Status/Error

Hexadecimal Value Definition
Description
0x00000000 TLR_S_OK
Status ok.
0xC02E0001 TLR_E_RPC_TASK_COMMAND_INVALID
Received packet with invalid command.
0XCO2E0100 TLR_E_RPC_STATUS
Generic RPC-error code. See PROFINET-status code for details.
0xCO02E0101 TLR_E_RPC_CONNECT_OUT_OF MEMORY

There was not enough memory allocated to receive the whole 10-Device's Connect-
Response PDU. Most likely it contains a very large ModuleDiff-Block.

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

376/390

© Hilscher, 2006-2017

Status/Error Codes Overview 377/390

Hexadecimal Value Definition
Description
0xC02E0102 TLR_E_RPC_FATAL_ERROR_CLB_ALREADY_REGISTERED
The fatal error callback function is already registered.
0xC02E0200 TLR_E_CLRPC_PACKET_SEND_FAILED
Error while sending internal message to another task.
0xC02E0201 TLR_E_CLRPC_TIMER_OUT_OF_MEMORY
Creating a TLR-Timer-packet in RPC task failed due to insufficient memory.
0xC02E0202 TLR_E_CLRPC_REF_COUNTER_INVALID
The reference counter value is invalid.
0xC02E0203 TLR_E_CLRPC_INVALID_PORT_HANDLE
The port handle is invalid.
0xC02E0204 TLR_E_CLRPC_TIMER_ALREADY_ACTIVE
The soft timer is already active (expected inactive).
0xC02E0300 TLR_E_CLRPC_MAPPER_INIT_FAILED
The parameter "uiMaxReg" (maximum amount of RPC-mapper registrations) is invalid in
CLRPC_EPMap_Initialize().
0xC02E0301 TLR_E_CLRPC_MAPPER_RESOURCE_LIMIT_EXCEEDED
The requested Endpoint-Mapper index is invalid.
0xC02E0302 TLR_E_CLRPC_MAPPER_RESOURCE_OUT_OF_MEMORY
Insufficient memory for this request.
0xC02E0303 TLR_E_CLRPC_MAPPER_STATUS_INVALID
The state of Endpoint-Mapper is invalid for this request.
0xC02E0304 TLR_E_CLRPC_MAPPER_STATUS_CLOSING
The Endpoint-Mapper is waiting for close-confirmation and therefore its status is invalid
for this request.
0xC02E0305 TLR_E_CLRPC_MAPPER_STATUS_UNKNOWN
The status of Endpoint-Mapper is unknown.
0xC02E0306 TLR_E_CLRPC_MAPPER_STATUS_CONFLICT
The status of Endpoint-Mapper is not "Ready" and therefore request
CLRPC_EPMap_Deregister_req() is invalid.
0xC02E0307 TLR_E_CLRPC_MAPPER_PARAMETER_FAILED
Invalid parameter in CLRPC_EPMap_Register_req_Compare().
0xC02E0308 TLR_E_CLRPC_MAPPER_SERVER_REGISTERED
CLRPC_EPMap_Deregister_req() is not allowed because at least one RPC-Server is
registered to this Endpoint-Mapper.
0xC02E0400 TLR_E_CLRPC_SERVER_INIT_FAILED
An error occurred in CLRPC_Server_Initialize().
0xC02E0401 TLR_E_CLRPC_SERVER_RESOURCE_LIMIT_EXCEEDED
The maximum number of registered RPC-Servers is exceeded or the maximum number
of outstanding requests is exceeded.
0xC02E0402 TLR_E_CLRPC_SERVER_TIMER_CREATE_FAILED
Creating TLR-Timer for RPC-Server failed.
0xC02E0403 TLR_E_CLRPC_SERVER_NO_SERVER_REGISTERED
There is no RPC-Server registered that could be deregistered
(CLRPC_ServerDeregister_req()).
0xC02E0404 TLR_E_CLRPC_SERVER_RESOURCE_OUT_OF_MEMORY
Insufficient memory to create an instance of RPC-Server.
0xC02E0405 TLR_E_CLRPC_SERVER_MAPPER_HANDLE_INVALID
The handle to Endpoint-Mapper in CLRPC_ServerRegister_req() is invalid.
0xC02E0406 TLR_E_CLRPC_SERVER_MAPPER_STATUS_INVALID

The status of Endpoint-Mapper in CLRPC_ServerRegister_req() is invalid.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview 378/390

Hexadecimal Value Definition
Description
0xC02E0407 TLR_E_CLRPC_SERVER_HANDLE_INVALID
The handle to RPC-Server instance is invalid.
0xC02E0408 TLR_E_CLRPC_SERVER_OBJECT_REGISTERED
There is at least one object registered to RPC-Server instance.
CLRPC_ServerDeregister_req() cannot proceed.
0xC02E0409 TLR_E_CLRPC_SERVER_PARAM_RECV_INVALID
Invalid parameter "ulMaxRecv" in request-packet in CLRPC_ServerRegister_req().
0xCO02E040A TLR_E_CLRPC_SERVER_PARAM_SEND_INVALID
Invalid parameter "ulMaxSend" in request-packet in CLRPC_ServerRegister_req().
0xC02E040B TLR_E_CLRPC_SERVER_ELEMENT_INVALID
Invalid RPC-Server element "ptElem". Internal RPC-Error.
0xC02E040C TLR_E_CLRPC_SERVER_REQUEST_CANCELED
This RPC-Request was cancelled.
0xC02E040D TLR_E_CLRPC_SERVER_STATE_INVALID
The state of RPC server is invalid for this request.
0xCO02E040E TLR_E_CLRPC_SERVER_ACTIVITY_ALREADY_INITIALIZED
The activity has already been initialized.
0xCO02E040F TLR_E_CLRPC_SERVER_RECEIVED_INVALID_RSP_PACKET
The RPC server received an invalid (unexpected) response packet.
0xC02E0500 TLR_E_CLRPC_OBJECT_RESOURCE_OUT_OF_MEMORY
Insufficient memory to create an RPC-Object instance in CLRPC_ObjectRegister_req().
0xC02E0501 TLR_E_CLRPC_OBJECT_SERVER_HANDLE_INVALID
The handle to RPC-Server instance in CLRPC_ObjectRegister_req() is invalid.
0xC02E0502 TLR_E_CLRPC_OBJECT_SERVER_STATUS_INVALID
The status of RPC-Server instance in CLRPC_ObjectRegister_req() is invalid.
0xC02E0503 TLR_E_CLRPC_OBJECT_HANDLE_INVALID
The handle to RPC-Object instance in CLRPC_ObjectDeregister_req() is invalid.
0xC02E0600 TLR_E_CLRPC_CLIENT_INIT_FAILED
One of the parameters "uiMaxReg" or "uiMaxReq" in CLRPC_Client_Initialize() is invalid.
0xC02E0601 TLR_E_CLRPC_CLIENT_RESOURCE_LIMIT_EXCEEDED
The maximum number of parallel RPC-Client instances in reached in
CLRPC_ClientRegister_req()
0xC02E0602 TLR_E_CLRPC_CLIENT_TIMER_CREATE_FAILED
Creating the TLR-Timer for RPC-Client instance in CLRPC_ClientRegister_req() failed.
0xC02E0603 TLR_E_CLRPC_CLIENT_RESOURCE_OUT_OF_MEMORY
Insufficient memory for this request.
0xC02E0604 TLR_E_CLRPC_CLIENT_MAPPER_STATUS_INVALID
The state of RPC Client is invalid for this request.
0xC02E0605 TLR_E_CLRPC_CLIENT_HANDLE_INVALID
The handle to RPC-Client instance is invalid.
0xC02E0606 TLR_E_CLRPC_CLIENT_REQUEST_LIMIT_EXCEEDED
The maximum amount of outstanding RPC-Requests for this RPC-Clients instance is
reached.
0xC02E0607 TLR_E_CLRPC_CLIENT_OPCODE_SEQUENCE
RPC-Client instances can only connect to an 10-Device if there are no outstanding RPC-
Requests. Currently at least one RPC-Request is outstanding.
0xC02E0608 TLR_E_CLRPC_CLIENT_DEREGISTERED
The RPC-Client instance you tried to use is going to deregister right now. Aborting your
Request !
0xC02E0609 TLR_E_CLRPC_CLIENT_ELEMENT_INVALID

Invalid RPC-Client instance element "ptElem". Internal RPC-Error.

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview 379/390

Hexadecimal Value Definition
Description
0xCO02EO060A TLR_E_CLRPC_CLIENT_LONG_TIMEOUT_HIT
The LONG timeout TLR-timer for an outstanding RPC-Request hit. Used internally in
RPC only.
0xC02E060B TLR_E_CLRPC_CLIENT_RESPONSE_SEQUENCE_NUMBER
Invalid sequence number in RPC-Message received by RPC-Client instance.
0xC02E060C TLR_E_CLRPC_CLIENT_CANCEL_TIMED_OUT
Canceling a running request timed out. This RPC Client will no longer be usable.
0xC02E060D TLR_E_CLRPC_CLIENT_NO_REQUEST_PACKET
The RPC Client did not have a packet to return.
0xCO02EO060E TLR_E_CLRPC_CLIENT_RECV_REQ_WITH_UNEXPECTED_FLAG
The RPC Client received a request with an unexpected Flag value.
0xCO02E060F TLR_E_CLRPC_CLIENT_ABORTED_BY_UNBIND_REQ
The request was aborted because the RPC client was unbind.
0xC02E0610 TLR_E_CLRPC_MAX_ACTIVITY_RESEND_RETRY_REACHED

The maximum resend number was reached by the activity.

Table 225: Status/Error Codes for RPC-Task

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Status/Error Codes Overview 380/390

9.9.1 RPC-Task Diagnosis -Codes

Packet Status/Error

Hexadecimal Value Definition
Description

0x00000000 TLR_S OK
Status ok.

0xC02E0010 TLR_DIAG_E_RPC_TASK_CLIENT_RESOURCE_INIT_FAILED
Initiating CLRPC-Client failed. (CLRPC_Client_lInitialize())

0xC02E0011 TLR_DIAG_E_RPC_TASK_SERVER_RESOURCE_INIT_FAILED
Initiating CLRPC-Server failed (CLRPC_Server_|Initialize()).

0xC02E0012 TLR_DIAG_E_RPC_TASK_EPMAP_RESOURCE_INIT_FAILED
Initiating CLRPC-Endpoint-Mapper failed (CLRPC_Mapper_Initialize()).

0xC02E0013 TLR_DIAG_E_RPC_TASK_INIT_LOCAL_CREATE_QUE_FAILED
Creating message queue failed.

0xC02E0014 TLR_DIAG_E_RPC_TASK_INIT_REMOTE_IDENT_EDD_FAILED
Identifying Drv_EDD failed.

0xC02E0015 TLR_DIAG_E_RPC_TASK_INIT_REMOTE_GET_MAC_FAILED
Getting the MAC address failed.

0xC02E0016 TLR_DIAG_E_RPC_TASK_INIT_REMOTE_IDENT_TCPUDP_QUE_FAILED
Getting queue handle to TCPIP-Task failed.

Table 226: RPC-Task Diagnosis-Codes

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Coding of Diagnosis

381/390

10 Coding of Diagnosis

The following tables represent diagnosis specific object and structure defined in PROFINET
specification (IEC 61158-6-10).

Coding of Channel Properties

Bit No Description

DO - D7 Data type of this channel (see Table 149: Coding of the field Type in field
usChannelProp)

D8 Accumulative. It should be set if the diagnosis is accumulated from several channels

D9 — D10 Maintenance (see Table 150: Coding of the field Maintenance in field
usChannelProp)

D11 — D12 Specifier. It will be handled by the Stack and shall not be set by application.

D13 - D15 Direction (see Table 151: Coding of the field Direction in field usChannelProp)

Table 227: Coding of the field Channel Properties

Coding of Channel Properties.Data type

Value (Hexadecimal) Description
0x00 Should be used if ChannelNumber is 0x8000 or If none of the below defined types are
appropriate
0x01 1 Bit
0x02 2 Bits
0x03 4 Bits
0x04 8 Bits
0x05 16 Bits
0x06 32 Bits
0x07 64 Bits
0x07 — OxFF Reserved

Table 228: Coding of the field data type in field Channel Properties

Coding of Channel Properties.Maintenance

Value (Hexadecimal) Description

0x00 Diagnosis

0x01 Maintenance Required
0x02 Maintenance Demanded
0x03 Qualified Diagnosis

Table 229: Coding of the field Maintenance in field Channel Properties

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Coding of Diagnosis 382/390

Coding of Channel Properties.Direction

Value (Hexadecimal) Description

0x00 Manufacturer specific
0x01 Input

0x02 Output

0x03 Input / Output

0x04 — OxFF Reserved

Table 230: Coding of the field Direction in field Channel Properties

Coding of Channel error type

Value (Hexadecimal) Description

0x0000 Reserved

0x0001 Short circuit

0x0002 Undervoltage

0x0003 Overvoltage

0x0004 Overload

0x0005 Overtemperature

0x0006 Line break

0x0007 Upper limit value exceeded

0x0008 Lower limit value exceeded

0x0009 Error

0x000A Simulation active

0x000B — 0Ox000E Reserved

0x000F Manufacturer specific, recommended for “parameterization missing”
0x0010 Manufacturer specific, recommended for “parameterization fault”
0x0011 Manufacturer specific, recommended for “power supply fault”
0x0012 Manufacturer specific, recommended for “fuse blown / open”
0x0013 Manufacturer specific, recommended for “communication fault”
0x0014 Manufacturer specific, recommended for “ground fault”

0x0015 Manufacturer specific, recommended for “reference point lost”
0x0016 Manufacturer specific, recommended for “process event lost / sampling error”
0x0017 Manufacturer specific, recommended for “threshold warning”
0x0018 Manufacturer specific, recommended for “output disabled”
0x0019 Manufacturer specific, recommended for “safety event”

0x001A Manufacturer specific, recommended for “external fault”

0x001B - Ox001E Manufacturer specific

0x001F Manufacturer specific, recommended for “temporary fault”
0x0020 - OxOOFF Reserved for common profiles (assigned by PROFIBUS International)
0x0100 - OX7FFF Manufacturer specific

0x8000 Data transmission impossible

0x8001 Remote mismatch

0x8002 Media redundancy mismatch

0x8003 Sync mismatch

0x8004 Isochronous mode mismatch

0x8005 Multicast CR mismatch

0x8006 Reserved

0x8007 Fiber optic mismatch

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Coding of Diagnosis

383/390

Value (Hexadecimal)

Description

0x8008

Network component function mismatch

0x8009 Time mismatch

Ox800A Dynamic frame packing function mismatch

0x800B Media redundancy with planned duplication mismatch
0x800C System redundancy mismatch

0x800D Multiple interface mismatch

Ox800E Nested diagnosis indication

Ox800F - Ox8FFF

Reserved

0x9000 - Ox9FFF

Reserved for profiles

OxA000 - OXFFFF

Reserved

Table 231: Coding of Channel error type. Note: values 0x8000 — 0x800E will be triggered by the Stack internally and

shall not be set by application

Coding of Extended channel error type

The value of this field depends on the field Channel error type. The values shall be set according to

following tables:

Value (hexadecimal) | Description Usage

0x0000 Reserved

0x0001 - Ox7FFF Manufacturer specific Alarm / Diagnosis
0x8000 Accumulative info Alarm / Diagnosis
0x8001 - Ox8FFF Reserved

0x9000 - Ox9FFF Profile specific error codes

Alarm / Diagnosis

0xA000

OxFFFF Reserved

Table 232: Coding of Extended channel error type for Channel Error Type 1 - OX7FFF

In conjunction with profile specific error types the extended channel error type will be set according

to following tabels:

Coding usExtChannelErrType in conjunction with Data transmission impossible error type

Value Description

0x8000 Link State Mismatch — Link down
0x8001 MAUType Mismatch

0x8003 Line delay mismatch

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Coding of Diagnosis

384/390

Coding of Extended error Type in conjunction with Remote Mismatch error type

Value Description

0x8000 Peer Chassis ID mismatch
0x8001 Peer Port ID mismatch
0x8002 RT Class 3 mismatch

0x8003 Peer MAUType mismatch
0x8004 Peer MRP-Domain ID mismatch
0x8005 No peer detected

0x8007 Peer CableDelay mismatch
0x8008 Peer PTCP mismatch

Other Reserved

Coding of Extended error Type in conjunction with Sync Mismatch error type

Value Description

0x8000 No Sync Message Received
0x8001 Jitter out of Boundary”
Other Reserved

Coding of Extended error Type in conjunction with Fiber optic mismatch error type

Value Description
0x8000 Power budget mismatch
Other Reserved

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

Appendix 385/390

11 Appendix

11.1

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:
Table 10

Table 11:
Table 12:

Table 13

Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:

Table 21
Table 22

Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:

Table 30

Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:

List of Tables

TS o) 2o][] PO PP P PP UTP PP 8
Terms, Abbreviations and DEfINMITIONSiiiii ettt e e et e e e e e e s et e e s st e e saba s e s saaaeesaansaeeanss 13
RETEIENCES 10 DIOCUMENTSeiiiiiiieiiiiieieiieeteteteteeeterasesesssesesesesesesesssesasesesssssesasssesssssssssssssssssasssssssnsssssnsssssssnsnrnnnns 14
Names of QUEUES IN PROFINET FilMWATIE.........uuuuuuiuieieiereeeeeeereeeseeesererereeesesesererererererererererererer... 20
Meaning of Destination-Parameter UIDESt.PArametersc..uuiiiiiaii it a e e e e e e e anees 22
Example for correct Use of Source- and Destination-related parameters.ccccvveiieeiiiiiiiieiee e 23
Hardware Assembly Options for different xC Ports

Communication Channel Addresses in DUAl-POrt-MEMOIYoociuuiiiiiee ittt ee e e s e e e s eneraee s 25
Communication Channel-related INFOrMEALIONoccuiiiiiiiii e

: Supported process data image synchronization modes
INPUE DAL IMBGE ... s
OULPUL DALA IMAGE ...
: General Structure of Packets for non-cyclic Data Exchange
Channel MailbOXEScouiiiiiiiieiiie e
Packet Header ulExt field for fragmented transfers
Common Status Structure Definitioncccecveeenee

Communication State of Change...........cccccceeevivvnnenn.

Meaning of Communication Change Of State FIAgSccoiiiiiiiiiie e e e e a e e e enees
CommuNiICation CONIOI BIOCKoiiiieiiiei ettt e e ettt e e e e e e et e e e e e e e eannataeeeaaeeeanneeeeeas
Naming convention of Input/Output Data
: Overview about essential FUNCHONAIILYcooiiiiiiiiie e e e e e e e e e et e e e e e e e anees
PROFINET Device Stack Events
IOPS - DataState - Bitwise mode
IOPS - DataState - Bytewise mode
Parameters of UpdateConsumerImage CallDAcKooiiuiiiiiiiiiiiiiiiii e e e e e e e e e eaees
Return Codes of UpdateConsumer Image Callback
Parameters of UpdateProviderImage CallDAcKcoooiiiiiiiiiiiiiiiiiii et e e e a e e
Return Codes of UpdateProviderImage Callback............c.uuiiiiii e
Communication State (V3.10 and later)
: Communication State (V3.9 and earlier)
Overview over the Configuration Packets of the PROFINET IO Device IRT Stack....................
PNS_IF_SET_CONFIGURATION_REQ_T - Set Configuration ReqUeSt...........c.ccccveuvvvireeeeeiinnns
Structure tDeviceParameters.........cccccceeeeennes
System flags to use for configuration of the Stack...
SErUCIUNE PNS_ T _AP T _STRUCT _T . ittt ittt ettt ettt ekt e e aat et e e st e e e bb e e e anbn e e e snbbeeesnbneee s
Structure PNS_IF_SUBMODULE_STRUCT _T .oiiitiiieiiiiteeitieeesstieeeesiteeeesteeaesssteeessneeeeesnnseaesssseeesansseessnssenesasseeenn
PNS_IF_SET_CONFIGURATION_CNF_T - Set Configuration Confirmation..............ccccceeeeeenne
PNS_REG_FATAL_ERROR_CALLBACK_REQ T - Register Fatal Error Callback Request.........
PNS_REG_FATAL_ERROR_CALLBACK_CNF_T - Register Fatal Error Callback Confirmation...
PNS_UNREG_FATAL_ERROR_CALLBACK_REQ_T - Unregister Fatal Error Callback Requestcccccee....
PNS_UNREG_FATAL_ERROR_CALLBACK_CNF_T - Unregister Fatal Error Callback Confirmation.................... 85
PNS_IF_SET_PORT_MAC_REQ_T - Set Port MAC Address REQUESEcueiiieiiiiiiiiieeeesiiiiieee e e esiinreeee e
PNS_IF_SET_PORT_MAC_CNF_T - Set Port MAC Address Confirmation.........
PNS_IF_SET_OEM_PARAMETERS_REQ_T - Set OEM Parameters Request
PNS_IF_SET_OEM_PARAMETERS_TYPE_1_ T - Set OEM Parameters for ulParamType =1
PNS_IF_SET_OEM_PARAMETERS_TYPE_2_ T - Set OEM Parameters for ulParamType = 2..........cccvvveeennn.
PNS_IF_SET_OEM_PARAMETERS_TYPE_3_T - Set OEM Parameters for ulParamType = 3...
PNS_IF_SET_OEM_PARAMETERS_TYPE_4_T - Set OEM Parameters for ulParamType = 4...
PNS_IF_SET_OEM_PARAMETERS_TYPE_5_T — Set OEM Parameters for ulParamType =5..
(OfeTe [TaTe o AU I 1V =T T PRSP R
PNS_IF_SET_OEM_PARAMETERS_TYPE_6_T - Set OEM Parameters for ulParamType = 6............cccvvveeeennnn.
PNS_IF_SET_OEM_PARAMETERS_TYPE_7_T - Set OEM Parameters for ulParamType = 7ccccceeruee 94
PNS_IF_OEM_PARAMETERS_TYPE_8_ T Set OEM Parameters for ulParamType = 8cccoociieeereeeniinns
PNS_IF_OEM_PARAMETERS_TYPE_10_T Set OEM Parameters for ulParamType = 10
PNS_IF_SET_OEM_PARAMETERS_CNF_T - Set OEM Parameters Confirmation
PNS_1F_LOAD_REMANENT_DATA_REQ_T - Load Remanent Data Requestccccceeeeeneeee
PNS_I1F_LOAD_REMANENT_DATA_CNF_T - Load Remanent Data Confirmation ...
PNS_IF_SET_10IMAGE_REQ_T — Set |O-IMage REQUEST ...
PNS_IF_SET_10IMAGE_CNF_T — Set 10-Image Confirmationc.ooiiiiiiiriiiniiiiee e
PNS_IF_SET_10XS_CONFIG_REQ_T — Set IOXS Config REQUESL.........cvvvvveeeeeiiiiiiieee e
PNS_IF_SET_I10XS_CONFIG_CNF_T — Set IOXS Config Confirmation
Structure |O_SIGNALS_CONFIGURE_SIGNAL_REQ _T ..ottt

PROFINET IO Device V3.12.0 | Protocol API

DOC111

110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Appendix 386/390

Table 63: 10_SIGNALS_CONFIGURE_SIGNAL_CNF_T — Configure Signal Confirmation.............ccccccoeiiiiieiieeniniiieenn. 111
Table 64: Overview over the Connection Establishment Packets of the PROFINET 10 Device IRT Stack..................... 118
Table 65: PNS_IF_AR_CHECK _IND_T - AR Check INdiCation.............ccvieiiiiiiiiiiiiie e a e

Table 66: PNS_IF_AR_CHECK_RSP_T - AR Check Response.....................

Table 67: PNS_IF_CHECK_IND_T - Check Indication............c..c.coecuvvveenennn.

Table 68: Possible values for field usModuleState in check indication
Table 69: Possible values for field usSubmodState in check INdICALION...........cocueiiiiiiiiii e
Table 70: PNS_IF_CHECK_RSP_T - Check Response
Table 71: Field usModulleState in response packet
Table 72: Field usSubmodState in response packet
Table 73: PNS_IF_CONNECTREQ_DONE_ IND_T - Connect Request Done INdiCation.............cccueeeieeeiiiiiiiieneee e 129
Table 74: PNS_IF_CONNECTREQ_DONE_RSP_T - Connect Request DONe RESPONSE........cccovcuviriiiieeiiiiiiiieree e eeiiiieees 130
Table 75: PNS_IF_PARAM_END_IND_T - Parameter ENd INAiCAtIONuueiiiiiiiiiiiiiiee e
Table 76: PNS_IF_PARAM_END_RSP_T - Parameter ENd RESPONSE........cccuviiiiiii e ettt
Table 77: PNS_IF_APPL_READY_IND_T - Application Ready..........ccccccceenueee

Table 78: PNS_IF_APPL_READY_CNF_T - Application Ready Confirmation
Table 79: PNS_IF_AR_IN_DATA_IND_T - AR InData INAICAtIONcoeiiiiiiiiiiiiiee et e e
Table 80: PNS_IF_AR_IN_DATA_RSP_T - AR INData RESPONSEuviiiieiiiiiiiiiiee e e sttt e e e e sttt e e e et e e e e e s e e nnevaee s
Table 81: PNS_IF_STORE_REMANENT_DATA _IND_T - Store Remanent Data Indication.............cccccccoevviviereeeseirinnennn.
Table 82: PNS_IF_STORE_REMANENT_DATA_RES_T - Store Remanent Data Response
Table 83: Packet overview of acyclic events indicated by the PROFINET IO Device stack.........cccccccoviviiiiieeececiiinenn. 141
Table 84: PNS_IF_READ_RECORD_IND_T - Read Record INAiCatioNuuviiiiiiiiiiiiiiee et a e
Table 85: PNS_IF_READ_RECORD_RSP_T - Read Record Response
Table 86: PNS_IF_WRITE_RECORD_IND_T - Write Record Indication
Table 87: PNS_IF_WRITE_RECORD_RSP_T - Write Record Response
Table 88: PNS_IF_AR_ABORT_IND_IND_T - AR ABOrIt INAICALION.ccceiiiiiiiiiiie et

Table 89: PNS_IF_AR_ABORT_IND_RSP_T - AR Abort Indication RESPONSE.......cciiiuuiiiiiieai et e e 152
Table 90: PNS_IF_SAVE_STATION_NAME_IND_T - Save Station Name Indication..............ccccvvevieeeiiiiiiiienee e eeciivee 154
Table 91: PNS_IF_SAVE_STATION_NAME_RSP_T - Save Station Name ReSPONSE.......cccouiiiiiiiiiiieei e 155

Table 92: PNS_IF_SAVE_IP_ADDRESS_IND_T - Save IP Address Indication
Table 93: PNS_IF_SAVE_IP_ADDRESS _RSP_T - Save IP Address RESPONSEccuvvieieeeiiiiiiiiiiee e eeiivees e e eneveeeas
Table 94: PNS_IF_START_LED BLINKING_IND_T - Start LED Blinking INdicationccccccveviiieeeniiieeeiiiee e
Table 95: PNS_IF_START_LED_BLINKING_RSP_T - Start LED BIlinking RESPONSEcccovviiiiiiiieeiiiiiiieeee e
Table 96: PNS_IF_STOP_LED_ BLINKING_IND_T - Stop LED Blinking INdicationccccceeceveiiiieeeniineeeieee s
Table 97: PNS_IF_STOP_LED_BLINKING_RSP_T - Stop LED Blinking ReSpPoNSse.........cccccceevvvvvveeneennn.

Table 98: PNS_IF_RESET_FACTORY_SETTINGS_IND_T - Reset Factory Settings Indication................

Table 99: Possible values Of the reSet COUE...........oiiiiiiiiii e

Table 100: PNS_IF_RESET_FACTORY_SETTINGS_RSP_T - Reset Factory Settings Response
Table 101 PNS_IF_APDU_STATUS_CHANGED_IND_T - APDU Status Changed Indication..............cccceevevveerieenesinnennn
Table 102: Meaning of bits of APDU status field
Table 103: PNS_I1F_APDU_STATUS_CHANGED_RSP_T - APDU Status Changed ReSPONSE...........cccovvvvvreirieeeeiinnnnnnn.
Table 104 PNS_1F_ALARM_IND_T - Alarm INAICALIONeiiiiiiiiiiiiii ettt e e e et e e e e e e e nneeeeeas
Table 105: PNS_I1F_ALARM_RSP_T - Alarm Indication Response................
Table 106: PNS_1F_RELEASE_REQ _ IND_T - Release Request Indication
Table 107: PNS_I1F_RELEASE_REQ_RSP_T - Release Request Indication Response............
Table 108: PNS_1F_LINK_STATUS_CHANGED_IND_T - Link Status Changed Indication
Table 109: Structure PNS_IF_LEINK _STATUS DATA T . .iiiiieiiiii oottt e e st e e s tteae s st e e asntee e e snteaesasaeeeeansneeesnseeesanneeenn
Table 110: PNS_IF_LINK_STATUS_CHANGED_RSP_T - Link Status Changed Response
Table 111: PNS_1F_USER_ERROR_IND_T - Error Indication Service...........

Table 112: PNS_IF_USER_ERROR_RSP_T - Error Indication Response
Table 113: PNS_IF_READ_IM_IND_T — Read I&M INICALIONuviiiiiieiiiiiiiiee ettt e e
Table 114: PNS_I1F_READ_IM_RES_T — Read I&M RESPONSEuueiiiiiiiiiiiiiieae ettt e e e et e e e e e e natae e e e e e e e nneaeeeas
Table 115: PNS_I1F_IMO_DATA_T — Structure of I&MO0 Information
Table 116: PNS_I1F_IM1_DATA_T — Structure of I&M1 Information
Table 117: PNS_I1F_IM2_DATA_T — Structure of I&M2 Information
Table 118: PNS_1F_IM3_DATA_T — Structure of I&M3 Information
Table 119: PNS_I1F_IM4_DATA_T — Structure of I&M4 Information
Table 120: PNS_1F_IM5_DATA_T — Structure of I&M5 Information
Table 121: PNS_I1F_IMO_FILTER_DATA_T — Structure of I&MO Filter Information
Table 122: PNS_IF_WRITE_IM_IND_T — Write I&M Indicationc.ccecvvvereeeeeiinnnnnn.

Table 123: PNS_IF_WRITE_IM_RES_T — Write &M RESPONSEueiiiiiiiiiiiiiieee ettt et e e e et e e e e e e e nneaeeeas
Table 124: PNS_IF_GET_ASSET_IND_T — Get AsSet INAICALIONuuiiiiiiiiiiiiiee et
Table 125: PNS_IF_GET_ASSET_RSP_T — Get ASSEt RESPONSEciiiiiiiiiiiiiieae ettt e et e e e e e e eneaeeeas
Table 126: PNS_1F_PARAMET_SPEEDUP_SUPPORTED_IND_T — Parameterization Speedup Supported Indication..... 200
Table 127: PNS_1F_PARAMET_SPEEDUP_SUPPORTED_RES_T- Parameterization Speedup Supported Response...... 201

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Appendix 387/390

Table 128:
Table 129:
Table 130:
Table 131:
Table 132:

Table 133

Table 176

Table 177:
Table 178:

Table 179

Table 182

: Values and their corresponding Meanings of ulConfigState
Table 134:
Table 135:
Table 136:
Table 137:
Table 138:
Table 139:
Table 140:
Table 141:
Table 142:
Table 143:
Table 144:
Table 145:
Table 146:
Table 147:
Table 148:
Table 149:
Table 150:
Table 151:
Table 152:
Table 153:
Table 154:
Table 155:
Table 156:
Table 157:
Table 158:
Table 159:
Table 160:
Table 161:
Table 162:
Table 163:
Table 164:
Table 165:
Table 166:
Table 167:
Table 168:
Table 169:
Table 170:
Table 171:
Table 172:
Table 173:
Table 174:
Table 175:

: PNS_IF_PARAM_SUBMODULE_CYCLE_T - Submodule cycle parameter..............c...........
Table 180 :
Table 181 :
:PNS_IF_DIAGNOSIS_ENTRY_T - DIiagNOSIS €NtVceieiiaeiiiiiiiiiiea et ee e eea e e
Table 183 :
Table 184 :
Table 185:
Table 186:
Table 187:
Table 188:
Table 189:
Table 190:
Table 191 PNS_IF_SEND_ALARM_REQ_T Send alarm request

Packet overview of acyclic events of the PROFINET IO Device stack requested by the application 206
PNS_IF_GET_DIAGNOSIS_REQ T - Get DIiagnosSiS REQUEST........cuiiiiiiiiiiiiiiie e e eciiiieee e e e e e e e ineveeeas

PNS_IF_GET_DIAGNOSIS_CNF_T - Get Diagnosis Confirmation
Meaning of single Bits in UIPNSStAte ..o
Values and their corresponding Meanings of ulLinkState......

PNS_IF_GET_XMAC_DIAGNOSIS_REQ_T - Get XMAC (EDD) Diagnosis ReqUESL............cccccceeriririiieerineens
PNS_IF_GET_XMAC_DIAGNOSIS_CNF_T - Get XMAC (EDD) Diagnosis Confirmation
Structure EDD_XMAC_COUNTERS Tuuiiiiiiiiiteitie ettt ettt sne ettt sne e
PNS_IF_SEND_PROCESS_ALARM_REQ_T - Process Alarm Request...............
PNS_I1F_SEND_PROCESS_ALARM_CNF_T - Process Alarm Confirmation
PNS_IF_SEND_DIAG_ALARM_REQ _T - Diagnosis Alarm REQUEST..........c.uuiiiiieeiiiiiieee e e
PNS_I1F_DIAG_ALARM_CNF_T - Diagnosis Alarm Confirmationc.ccccoceiiiiiiiiiiieneennn.
PNS_IF_RETURN_OF_SUB_ALARM_REQ T - Return of Submodule Alarm Request..............
PNS_IF_RETURN_OF SUB_ALARM_CNF_T - Return of Submodule Alarm Confirmation
PNS_1F_ABORT_CONNECTION_REQ_T - AR ADOI REQUESTeiiiiiiiieiiie ittt
PNS_IF_ABORT_CONNECTION_CNF_T - AR Abort Request Confirmation
PNS_I1F_PLUG_MODULE_REQ T - Plug Module Requestcccceeieinnnneen.
PNS_IF_PLUG_MODULE_CNF_T - Plug Module Confirmationc.c........
PNS_I1F_PLUG_SUBMODULE_REQ_T - Plug Submodule Request.....................
PNS_IF_PLUG_SUBMODULE_CNF_T - Plug Submodule Confirmation............c..cccoecuviierieesiiiiiiees e e
PNS_1F_PLUG_SUBMODULE_EXTENDED_REQ_T — Extended Plug Submodule Requestcccevenenne
PNS_1F_PLUG_SUBMODULE_EXTENDED_CNF_T — Extended Plug Submodule Confirmation....
PNS_IF_PULL_MODULE_REQ_T - Pull Module Request.............
PNS_1F_PULL_MODULE_CNF_T — Pull Module Confirmation.........
PNS_I1F_PULL_SUBMODULE_REQ_T - Pull Submodule Request
PNS_1F_PULL_SUBMODULE_CNF_T - Pull Submodule Confirmation............ccccooiiiiiiiiiiiaiiieec e
PNS_IF_GET_STATION_NAME_REQ_T - Get Station Name ReQUESLcevieeiiiiiiiiirie e esiiireer e e e
PNS_IF_GET_STATION_NAME_CNF_T - Get Station Name Confirmationcccccceveeeiiiiiiieeniee e
PNS_IF_GET_IP_ADDR_REQ_T - Get IP Address Request
PNS_IF_GET_IP_ADDR_CNF_T - Get IP Address Confirmationcccvuvierieeiiiiiiiiee e ee e
PNS_I1F_ADD_CHANNEL_DIAG_REQ_T - Add Channel Diagnosis ReqUESLccuueeeiieriiiiiiiiiieee e
PNS_I1F_ADD_CHANNEL_DIAG_CNF_T - Add Channel Diagnosis Confirmationc..cccocccuvvvvreeeseiivvnennn.
PNS_I1F_ADD_EXTENDED_DIAG_REQ_T - Add Extended Channel Diagnosis Request............ccccccoeeiuvneeen.
PNS_IF_ADD_EXTENDED_DIAG_CNF_T - Add Extended Channel Diagnosis Confirmation ..
PNS_I1F_ADD_GENERIC_DIAG_REQ_T - Add Generic Channel Diagnosis Request..............
Coding of the field USUSErSIIUCEI............ooiiiiiiiiiiiic e
PNS_IF_ADD_GENERIC_DIAG_CNF_T - Add Generic Channel Diagnosis Confirmation.................ccccuve....
PNS_I1F_REMOVE_DIAG_REQ_T - Remove Diagnosis REQUESTcooiiiiiiiiiiieiiiiiiiee e
PNS_1F_REMOVE_DIAG_CNF_T - Remove Diagnosis Confirmation
PNS_IF_GET_CONFIGURED_SUBM_CNF_T - Get Submodule Configurationc.ccccvvvvieeeeeininnennn.
Elements of PNS_IF_CONFIGURED_SUBM_STRUCT _T.....cciiiiiiiiiiieiiee ettt e s
PNS_IF_SET_SUBM_STATE_REQ-T — Set Submodule State Request
Possible Values Of USSUBMSTATEcccoooiiiiiiiiii e e e
PNS_IF_SET_SUBM_STATE_CNF-T - Set Submodule State Confirmationccccceeeeiiiiiiieieee s
PNS_IF_GET_PARAMETER_REQ_T - Get Parameter REQUEST...........u s
PNS_IF_PARAM _E - Valid parameter OPtiONS........ccoiiuriiiieeeeeiiiiiiitee e e et seiitaeea e e e s ssiasaeeaeeassssnereeeaaessesssneees
PNS_IF_GET_PARAM_CNF_T - Get Diagnosis Confirmation

TPNS_IF_PARAM _MRP_T = Moo ee e e e eee e ee s

PNS_IF_PARAM_MRP_STATE_E - Valid values for MRP State.cccvuviirieeiiiiiiiiin e
PNS_IF_PARAM_MRP_ROLE_E - Valid values for MRP ROIEc.cccveiieeeeeeeeeeeeen,

PNS_IF_PARAM_ETHERNET_T - Ethernet parameters............cccceeiriiiiiiieee e
PNS_IF_DIAGNOSIS_T - DIagNOSIS AALAeeiieeiiiiiiiiiiiae et e e e e e e e e e e eeiieeeeaa e e enees

PNS_IF_PARAM_IMO_DATA_T — Stack I&MO record contentcccceeeeeeeeniiiiiiieneeennnes
PNS_IF_PARAM_IM5 DATA_T — Stack I&M5 record contentccueeeeeeieiiiiiiiieneeennnes
PNS_IF_ADD_PE_ENTITY_REQ-T — Add PE entity reqUeSt..........ccccocvverrieririeniienree e
PNS_IF_ADD_PE_ENTITY_CNF-T — Add PE Entity confirmation.............cccccveveeeiiiciiiieeneenn.
PNS_I1F_REMOVE_PE_ENTITY_REQ-T — Remove PE entity request...........cccceeeeeviiiiiieeneenn.
PNS_IF_REMOVE_PE_ENTITY_CNF-T — Remove PE Entity confirmation.............ccccccveeeiiiiiiienie e,
PNS_IF_UPDATE_PE_ENTITY_REQ-T — Update PE entity reqUESEcueerieeiiiiiiieeeee e
PNS_IF_UPDATE_PE_ENTITY_CNF-T — Update PE Entity confirmation

Table 192 Possible values for Alarm typecccueeeiriiiiiiiieee e
Table 193 Possible values for USEr StrUCTUIE IENTITIETot e e e e e e e e e e e e e e e eeeaes

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Appendix 388/390

Table 194 Alarm data AefiNItION. o e et e ettt e e e e e ettt e e e e e e e e aat bt e e e e e e e e nnsbneeaaeeeaannereeeas
Table 195 Upload and Retrieval Structure definition.............ooiiii i e e e e e e snerae s
Table 196 Possible value for Upload and Retrieval alarm subtype

Table 197 Upload and Retrieval record data deSCHPLIONciiiiiiiiiiiie e e e s et r e e e e e e saneaaees
Table 198: PNS_IF_SEND_ALARM_CNF_T - Send Alarm Confirmation.............couieiiiiiiiiiiiii e esiiveee e e
Table 199: Handling of basic parameters...........ccveiiiiiiiiiiee e

Table 200: Smalles possible Cycle Time depending using multiple ARs

Table 201: Hardware resources used by the PROFINET Device stack for netX 100/500.........ccccccveeeiiiiiiiiiereeeeeeiiinennn. 299

Table 202: Hardware resources used by the PROFINET Device stack for netX 50
Table 203: Hardware resources used by the PROFINET Device stack for netX 51
Table 204: Overview about the recommended Task Priorities (*priority of the RX_TIMER should be set to TSK_PRIO_5

only for Isochronous Applications with fast cycles 250us, see also [8.9]) 308
Table 205: MAU types for fiber OptiC POMScceeeiieiiee e 315
Table 206: Coding of PNIO Status ErrorCode (Excluding reserved Values) 331
Table 207: Coding of PNIO status ErrorDecode (Excluding reserved Values)............cccvvvveveeeiiiciiiveeneeennn 331
Table 208: Coding of ErrorCodel for ErrorDecode = PNIORW. (Excluding reserved Values) 332
Table 209: Coding of ErrorCodel for ErrorDecode = PNIO. (Excluding reserved Values)..........ccccceeeeviiiivieieeeceesiiven 338
Table 210: Stack or Application stores Remanent Data
Table 211: Status/Error Codes OVerview..........cccceevvveeeniinenn.

Table 212: Status/Error Codes fOr CIMCTL TASK-. ... ciiii ittt et e e e e e sttt e e e e e e s e nntbeeeeaeeaennneaeeeas
Table 213: CMCTL -Task DIiagnOSIS-COUES..........ueiiiaaiiiiiiiiii ettt e e ettt e e e e s e tbe et e e e e e e e e sabeeeeaaeeaannsaneeeaeeaaanneaneeas
Table 214: Status/Error Codes for CM-Dev Task....................
Table 215: CM-Dev-Task Diagnosis-Codes..........ccccceeeiuuvneen.

Table 216: Status/Error Codes for EDD Task ...
Table 217: EDD-Task Diagnosis-Codes............
Table 218: Status/Error Codes for ACP Task....
Table 219: ACP-Task Diagnosis-Codes............
Table 220: Status/Error Codes for DCP Task ...
Table 221: DCP-Task Diagnosis-Codes............
Table 222: StatuS/Error COAES fOr MGT TASKiiiiiiiiiiiiiiei ettt e e ettt e e e e et e e e e e e s e sbbe e e e e e e e sannntaeeeeaeeaanneneeeas
Table 223: MGT-TaSK DIiagNOSIS-COUESceiiiueeiiiiiae ettt e e ettt e e e e s ettt e e e e e e e aatbeeeeaaeasaansaeeeeeaaeeaannnseneeeaeeaannsaeeeas
Table 224: Status/Error Codes Overview
Table 225: Status/Error COAES fOr RPC-TASKciiuiiiiiiiie ettt ettt et e e s st e e snae e e nebeee s
Table 226: RPC-TaSK DiagNOSIS-COUES.ccoiiuiiiiiiee ettt e e e e ettt e e e e e s e e e e e s st e e e e e e s satbereeeaaeesasatbaeeeaeeeassnsreees
Table 227: Coding of the field Channel Properties...........ccovvvvevieeiiiiiiieeneenn.
Table 228: Coding of the field data type in field Channel Properties.............
Table 229: Coding of the field Maintenance in field Channel Properties
Table 230: Coding of the field Direction in field Channel Propertiesocuueeiiiioiiiiiiiiiee e 382
Table 231: Coding of Channel error type. Note: values 0x8000 — 0x800E will be triggered by the Stack internally and
shall NOt be Set DY APPIICALION........ueiiiii it e e e e et e e e e s sa bt e et e e e s sassatbeeaeaeeaansnrraees
Table 232: Coding of Extended channel error type for Channel Error Type 1 - OX7FFF

11.2 List of Figures

Figure 1: The 3 different Ways to access a Protocol Stack running on a netX SyStem...........cccoiiiiiiiiiieeiiiiiiiieeee e
Figure 2: Use of ulDest in Channel and System MailDOX............ooooiiiiiiiiiii e e e
Figure 3: USING UESTC anNd ULSIC IO ...ttt s ettt e e e e e ettt e e e e e e s stbaeeeaeeassntbaaeeaeeessanee
FIQUIE 4: PACKEE TYPES ...eeeeiiieeiiiiitieit ettt ettt e e e e e ettt e e e e e s et e e e e e e e e e annnnneeaaaean
Figure 5: Splitting a large packet into fragments (figure shows 3 fragments)......................
Figure 6: Sequence of fragmented indication and reSPONSEceeeeviviiiiiieeeeeiiiiiiieeeeeenn
Figure 7: Task Structure of the PROFINET IO Device StacK........ccccccooviiiiiiiieiiiiiiiiieneen,
Figure 8: Provider ProCESS Data SITUCTUIE........iiiiiiiiiiiiiee e e ee ettt e e e e s ettt e e e e e s e et e e e e e e s s aaatb e et eaeesassstbaeeeaeeassntbaneeaeeesannses
Figure 9: ConsumMEr ProCeSS Data SIIUCIUIE.ciiuiiiiieee e e ettt e e e e ettt e e e e s et e e e e e s s s tb e et eaeesassbtbaeteeeeaasstbaaeeaeeessnnse
Figure 10: Configuring the PROFINET IO Device Stack
Figure 11: Register Application Service Packet sequence
Figure 12: Initial Configuration by DCP without topology information at controller side. ... 113
Figure 13: Initial Configuration by DCP using topology information at controller side.c.cccoeiivneeee. 114
Figure 14: Sequence between Controller, Stack and Application during Connection Establishment.............................. 115
Figure 15: Sequence between Controller, Stack and Application during Connection Establishment (continued)........... 116
Figure 16: Check Service Packet sequence for non adapting applications
Figure 17: Check Service Packet sequence for adapting applications..........
Figure 18: Desired Application behavior on Save Station Name Indication
Figure 19: Desired application behavior on Save IP Address Indication.......
Figure 20: Application behavior on Reset Factory Settings Indication
T 18 (R B V=T o1 T g To o= 11T PR PPRPRN
Figure 22. Event INAICAtION RESPONSEuuiiiiiaiiiiitiiiit ettt e e e ettt et e e e e e e aat bt et eaeeaaantbeeeeaeeaaansbeeeeaeaeaaantanneaaaeasannne
Figure 23: Plug SUbmodule ServiCe PaCKet SEQUENCEcuuiiiiiieeeieiiiiett e e e e e ettt e e e e e s st e e e e e e e s satbeeeeaeeessnstbaeeeaeeeaannnes

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Appendix 389/390

Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:

Plug Submodule Service packet sequence (CONLINUE)eiii it er e e e e enereee e e e e e enees 231
Pull Module Service PACKEt SEQUENCEciiiiiiiiiiiiiee ettt e e s e e e e e e s e s tb e et e e e e sesntbaeeeaeeeasnees

Pull Submodule Service packet sequence
SetSubModuleState from Bad t0 GOOUeiiiiiiiiii e e e a e e e anee
Sequence when asset management data iS FEAUoiviiiiiiiee i e e e e e r e e e e e e enees
Sequence of MAC Address determination
Vendor and device identification in the GSDML file
Structural organization of &M Records within a Device and the Access Paths

PROFINET Stack is accessible on the DPM Channel0 and Ethernet Interface — on the Channell 326
PROFINET Stack is accessible on the DPM channel0 and Ethernet Interfaceon the channell..................... 327
Priority setup of the RX_TIMER task in the loadable PROFINET firmware for isochronous application.......... 329
Structure of the PROFINET STAtUS COUEuuuiiiiiiiieeiiiee ettt et e e e e e e e et e e e e e e eeesaaneeeeeeeeeaaanaaeeeees 330

PROFINET IO Device V3.12.0 | Protocol API
DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public © Hilscher, 2006-2017

Appendix

390/390

11.3 Contacts

Headquarters

Germany

Hilscher Gesellschaft flir
Systemautomation mbH
Rheinstrasse 15

65795 Hattersheim

Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com

Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China

Hilscher Systemautomation (Shanghai) Co. Ltd.

200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn

Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France

Hilscher France S.a.r.l.
69500 Bron

Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr

Support
Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India

Hilscher India Pvt. Ltd.
Pune, Delhi, Mumbai
Phone: +91 8888 750 777
E-Mail: info@hilscher.in

Italy

Hilscher Italia S.r.I.

20090 Vimodrone (MI)

Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support

Phone: +39 02 25007068
E-Mail: it.support@hilscher.com

Japan

Hilscher Japan KK

Tokyo, 160-0022

Phone: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp
Support

Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Korea

Hilscher Korea Inc.

Seongnam, Gyeonggi, 463-400
Phone: +82 (0) 31-789-3715
E-Mail: info@hilscher.kr

Switzerland

Hilscher Swiss GmbH

4500 Solothurn

Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch
Support

Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA

Hilscher North America, Inc.
Lisle, IL 60532

Phone: +1 630-505-5301

E-Mail: info@hilscher.us
Support

Phone: +1 630-505-5301

E-Mail: us.support@hilscher.com

PROFINET IO Device V3.12.0 | Protocol API

DOC111110API17EN | Revision 17 | English | 2017-05 | Released | Public

© Hilscher, 2006-2017

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.kr
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	1 Introduction
	1.1 About this Document
	1.1.1 List of Revisions

	1.2 Functional Overview
	1.3 System Requirements
	1.4 Intended Audience
	1.5 Specifications for Stack
	1.5.1 Supported Protocols
	1.5.2 Technical Data
	1.5.3 Limitations

	1.6 Terms, Abbreviations and Definitions
	1.7 References to Documents
	1.8 Legal Notes
	1.9 Third Party Software Licenses

	2 Fundamentals
	2.1 General Access Mechanisms on netX Systems
	2.2 Accessing the Protocol Stack by Programming the Stacks PNS-IF Task’s Queue
	2.2.1 Getting the Receiver Task Handle of the Process Queue

	2.3 Accessing the Protocol Stack via the Dual Port Memory Interface
	2.3.1 Communication via Mailboxes
	2.3.2 Using Source and Destination Variables correctly
	2.3.2.1 How to use ulDest for Addressing rcX and the netX Protocol Stack by the System and Channel Mailbox
	2.3.2.2 How to use ulSrc and ulSrcId
	2.3.2.3 How to Route rcX Packets

	2.3.3 Obtaining useful Information about the Communication Channel

	2.4 Packet Types
	2.4.1 Timeout for Response Packets

	3 Dual-Port Memory
	3.1 Cyclic Data (Input/Output Data)
	3.1.1 Input Process Data
	3.1.2 Output Process Data

	3.2 Acyclic Data (Mailboxes)
	3.2.1 General Structure of Messages or Packets for Non-Cyclic Data Exchange
	3.2.2 Status and Error Codes
	3.2.3 Differences between System and Channel Mailboxes
	3.2.4 Send Mailbox
	3.2.5 Receive Mailbox
	3.2.6 Channel Mailboxes (Details of Send and Receive Mailboxes)
	3.2.7 Packet fragmentation

	3.3 Status
	3.3.1 Common Status
	3.3.1.1 All Implementations
	3.3.1.2 Master Implementation
	3.3.1.3 Slave Implementation

	3.3.2 Extended Status

	3.4 Control Block

	4 Getting Started
	4.1 Structure of the PROFINET Device Stack
	4.2 Naming Conventions
	4.3 Overview about Essential Functionality
	4.4 Event Mechanism
	4.5 Device Handle

	5 Exchanging Cyclic Data
	5.1 General Concepts
	5.2 Behavior regarding IO data and IOPS
	5.3 Exchanging cyclic Data using Callback Interface
	5.3.1 Overview of the Callback Interface
	5.3.2 Callback Functions
	5.3.2.1 UpdateConsumerImage Callback
	5.3.2.2 UpdateProviderImage Callback
	5.3.2.3 Event Handler Callback

	6 Status Information
	6.1 Communication State
	6.1.1 Implementation from V3.10
	6.1.2 Legacy Implementation (V3.9 and earlier)

	7 Packet Interface
	7.1 Configuring the IO-Device Stack
	7.1.1 Cyclic Process Data Image
	7.1.2 Configuration of Process Data Images
	7.1.3 Configuration of the Submodules
	7.1.4 Configuring the PROFINET IO Device Stack
	7.1.4.1 Remark on Reconfiguration

	7.1.5 Set Configuration Service
	7.1.5.1 Set Configuration Request
	7.1.5.2 Set Configuration Confirmation
	7.1.5.3 Behavior when receiving a Set Configuration Command

	7.1.6 Register Application Service
	7.1.6.1 Register Application Request
	7.1.6.2 Register Application Confirmation
	7.1.6.3 Register Application for Selective Indications Only

	7.1.7 Unregister Application Service
	7.1.7.1 Unregister Application Request
	7.1.7.2 Unregister Application Confirmation

	7.1.8 Register Fatal Error Callback Service
	7.1.8.1 Register Fatal Error Callback Request
	7.1.8.2 Register Fatal Error Callback Confirmation

	7.1.9 Unregister Fatal Error Callback Service
	7.1.9.1 Unregister Fatal Error Callback Request
	7.1.9.2 Unregister Fatal Error Callback Confirmation

	7.1.10 Set Port MAC Address Service
	7.1.10.1 Set Port MAC Address Request
	7.1.10.2 Set Port MAC Address Confirmation

	7.1.11 Set OEM Parameters Service
	7.1.11.1 Set OEM Parameters Request
	7.1.11.2 Set OEM Parameters Confirmation

	7.1.12 Load Remanent Data Service
	7.1.12.1 Load Remanent Data Request
	7.1.12.2 Load Remanent Data Confirmation

	7.1.13 Configuration Delete Service
	7.1.13.1 Configuration Delete Request
	7.1.13.2 Configuration Delete Confirmation

	7.1.14 Set IO-Image Service
	7.1.14.1 Set IO-Image Request
	7.1.14.2 Set IO-Image Confirmation

	7.1.15 Set IOXS Config Service
	7.1.15.1 Set IOXS Config Request
	7.1.15.2 Set IOXS Config Confirmation

	7.1.16 Configure Signal Service
	7.1.16.1 Configure Signal Request
	7.1.16.2 Configure Signal Confirmation
	7.1.16.3 Example: Configure Signal Request packet

	7.2 Connection Establishment
	7.2.1 AR Check Service
	7.2.1.1 AR Check Indication
	7.2.1.2 AR Check Response

	7.2.2 Check Indication Service
	7.2.2.1 Check Indication
	7.2.2.2 Check Response

	7.2.3 Connect Request Done Service
	7.2.3.1 Connect Request Done Indication
	7.2.3.2 Connect Request Done Response

	7.2.4 Parameter End Service
	7.2.4.1 Parameter End Indication
	7.2.4.2 Parameter End Response

	7.2.5 Application Ready Service
	7.2.5.1 Application Ready Request
	7.2.5.2 Application Ready Confirmation

	7.2.6 AR InData Service
	7.2.6.1 AR InData Indication
	7.2.6.2 AR InData Response

	7.2.7 Store Remanent Data Service
	7.2.7.1 Store Remanent Data Indication
	7.2.7.2 Store Remanent Data Response

	7.3 Acyclic Events indicated by the Stack
	7.3.1 Read Record Service
	7.3.1.1 Read Record Indication
	7.3.1.2 Read Record Response

	7.3.2 Write Record Service
	7.3.2.1 Write Record Indication
	7.3.2.2 Write Record Response

	7.3.3 AR Abort Indication service
	7.3.3.1 AR Abort Indication Indication
	7.3.3.2 AR Abort Indication Response

	7.3.4 Save Station Name Service
	7.3.4.1 Save Station Name Indication
	7.3.4.2 Save Station Name Response

	7.3.5 Save IP Address Service
	7.3.5.1 Save IP Address Indication
	7.3.5.2 Save IP Address Response

	7.3.6 Start LED Blinking Service
	7.3.6.1 Start LED Blinking Indication
	7.3.6.2 Start LED Blinking Response

	7.3.7 Stop LED Blinking Service
	7.3.7.1 Stop LED Blinking Indication
	7.3.7.2 Stop LED Blinking Response

	7.3.8 Reset Factory Settings Service
	7.3.8.1 Reset Factory Settings Indication
	7.3.8.2 Reset Factory Settings Response

	7.3.9 APDU Status Changed Service
	7.3.9.1 APDU Status Changed Indication
	7.3.9.2 APDU Status Changed Response

	7.3.10 Alarm Indication Service
	7.3.10.1 Alarm Indication
	7.3.10.2 Alarm Indication Response

	7.3.11 Release Request Indication Service
	7.3.11.1 Release Request Indication
	7.3.11.2 Release Request Indication Response

	7.3.12 Link Status Changed Service
	7.3.12.1 Link Status Changed Indication
	7.3.12.2 Link Status Changed Response

	7.3.13 Error Indication Service
	7.3.13.1 Error Indication
	7.3.13.2 Error Indication Response

	7.3.14 Read I&M Service
	7.3.14.1 Read I&M Indication
	7.3.14.2 Read I&M Response

	7.3.15 Write I&M Service
	7.3.15.1 Write I&M Indication
	7.3.15.2 Write I&M Response

	7.3.16 Get Asset Service
	7.3.16.1 Get Asset Indication
	7.3.16.2 Get Asset Response

	7.3.17 Parameterization Speedup Support
	7.3.17.1 Parameterization Speedup Support Indication
	7.3.17.2 Parameterization Speedup Supported Response

	7.3.18 Event Indication Service
	7.3.18.1 Event Indication
	7.3.18.2 Event Indication Response

	7.4 Acyclic Events requested by the Application
	7.4.1 Get Diagnosis Service
	7.4.1.1 Get Diagnosis Request
	7.4.1.2 Get Diagnosis Confirmation

	7.4.2 Get XMAC (EDD) Diagnosis Service
	7.4.2.1 Get XMAC (EDD) Diagnosis Request
	7.4.2.2 Get XMAC (EDD) Diagnosis Confirmation

	7.4.3 Process Alarm Service
	7.4.3.1 Process Alarm Request
	7.4.3.2 Process Alarm Confirmation

	7.4.4 Diagnosis Alarm Service
	7.4.4.1 Diagnosis Alarm Request
	7.4.4.2 Diagnosis Alarm Confirmation

	7.4.5 Return of Submodule Alarm Service
	7.4.5.1 Return of Submodule Alarm Request
	7.4.5.2 Return of Submodule Alarm Confirmation

	7.4.6 AR Abort Request Service
	7.4.6.1 AR Abort Request
	7.4.6.2 AR Abort Request Confirmation

	7.4.7 Plug Module Service
	7.4.7.1 Plug Module Request
	7.4.7.2 Plug Module Confirmation

	7.4.8 Plug Submodule Service
	7.4.8.1 Plug Submodule Request
	7.4.8.2 Plug Submodule Confirmation
	7.4.8.3 Extended Plug Submodule Request
	7.4.8.4 Extended Plug Submodule Confirmation

	7.4.9 Pull Module Service
	7.4.9.1 Pull Module Request
	7.4.9.2 Pull Module Confirmation

	7.4.10 Pull Submodule Service
	7.4.10.1 Pull Submodule Request
	7.4.10.2 Pull Submodule Confirmation

	7.4.11 Get Station Name Service
	7.4.11.1 Get Station Name Request
	7.4.11.2 Get Station Name Confirmation

	7.4.12 Get IP Address Service
	7.4.12.1 Get IP Address Request
	7.4.12.2 Get IP Address Confirmation

	7.4.13 Add Channel Diagnosis Service
	7.4.13.1 Add Channel Diagnosis Request
	7.4.13.2 Add Channel Diagnosis Confirmation

	7.4.14 Add Extended Channel Diagnosis Service
	7.4.14.1 Add Extended Channel Diagnosis Request
	7.4.14.2 Add Extended Channel Diagnosis Confirmation

	7.4.15 Add Generic Diagnosis Service
	7.4.15.1 Add Generic Channel Diagnosis Request
	7.4.15.2 Add Generic Channel Diagnosis Confirmation

	7.4.16 Remove Diagnosis Service
	7.4.16.1 Remove Diagnosis Request
	7.4.16.2 Remove Diagnosis Confirmation

	7.4.17 Get Submodule Configuration Service
	7.4.18 Set Submodule State Service
	7.4.18.1 Set Submodule State Request
	7.4.18.2 Set Submodule State Confirmation

	7.4.19 Get Parameter Service
	7.4.19.1 Get Parameter Service
	7.4.19.2 Get Parameter Confirmation

	7.4.20 Add PE entity service
	7.4.20.1 Add PE entity request
	7.4.20.2 Add PE entity confirmation

	7.4.21 Remove PE entity service
	7.4.21.1 Remove PE entity request
	7.4.21.2 Remove PE entity confirmation

	7.4.22 Update PE entity service
	7.4.22.1 Update PE entity request
	7.4.22.2 Update PE entity confirmation

	7.4.23 Send Alarm Service
	7.4.23.1 Send Alarm Request
	7.4.23.2 Send Alarm Confirmation

	8 Special Topics
	8.1 Behavior under special situations
	8.1.1 Sequence of configuration evaluation
	8.1.2 Configuration Lock
	8.1.3 Setting Parameters by means of DCP

	8.2 Multiple ARs
	8.2.1 Ownership
	8.2.2 Possibilities and Limitations for the Feature Shared Device

	8.3 Asset Management
	8.4 PROFIenergy ASE
	8.5 Ethernet MAC Addresses
	8.6 Usage of Linkable Object Module
	8.6.1 Config.c
	8.6.1.1 Hardware Resources
	8.6.1.2 Disable XMAC3
	8.6.1.3 Systime Unit
	8.6.1.4 Static Task List

	8.6.2 PNS_StackInit()
	8.6.3 Task Priorities
	8.6.4 Fiber optic device
	8.6.4.1 Fiber optic configuration
	8.6.4.2 Medium Attachment Unit for Fiber Optic

	8.6.5 PROFINET Netload Requirements

	8.7 PROFINET Certification
	8.7.1 RT Tests (Conformance class A, B and C)
	8.7.1.1 Description
	8.7.1.2 General Requirements for RT Tests
	8.7.1.3 Common checks before Certification (GSDML)
	8.7.1.4 Basic Application Behavior

	8.7.2 IRT Tests (Conformance class C only)
	8.7.2.1 Description
	8.7.2.2 General Requirements for IRT Tests
	8.7.2.3 Hardware Requirements for IRT Tests
	8.7.2.4 Software Requirements for IRT Tests
	8.7.2.5 GSDML Requirements for IRT Tests

	8.7.3 Network Load Tests
	8.7.3.1 Description
	8.7.3.2 Requirements to the Application

	8.7.4 How to handle I&M Data
	8.7.4.1 Overview
	8.7.4.2 Structure and access paths of I&M objects
	8.7.4.3 Usage of I&M with Hilscher PROFINET Protocol

	8.8 Second DPM channel – Ethernet Interface
	8.9 Isochronous Application
	8.10 PROFINET Status Code
	8.10.1 The ErrorCode Field
	8.10.2 The ErrorDecode Field
	8.10.3 The ErrorCode1 and ErrorCode2 Fields
	8.10.3.1 ErrorCode1 and ErrorCode2 for ErrorDecode = PNIORW

	8.10.4 ErrorCode1 and ErrorCode2 for ErrorDecode = PNIO
	8.10.5 ErrorCode1 and ErrorCode2 for ErrorDecode is Manufacturer Specific

	8.11 Remanent Data Handling
	8.11.1 Remanent Data
	8.11.2 Parameters ‘Name of Station’ and ‘IP Address Parameters’

	8.12 Identification & Maintenance 5 (I&M5)
	8.12.1 APIs for usage of I&M5

	9 Status/Error Codes Overview
	9.1 General Errors
	9.2 Status/Error Codes for CMCTL Task
	9.2.1 CMCTL-Task Diagnosis-Codes

	9.3 Status/Error Codes for CM-Dev Task
	9.3.1 CM-Dev-Task Diagnosis-Codes

	9.4 Status/Error Codes for EDD Task
	9.4.1 EDD-Task Diagnosis-Codes

	9.5 Status/Error Codes for ACP Task
	9.5.1 ACP-Task Diagnosis-Codes

	9.6 Status/Error Codes for DCP Task
	9.6.1 DCP-Task Diagnosis-Codes

	9.7 Status/Error Codes for MGT Task
	9.7.1 MGT-Task Diagnosis-Codes

	9.8 Status/Error Codes for FODMI-Task
	9.9 Status/Error Codes for RPC-Task
	9.9.1 RPC-Task Diagnosis -Codes

	10 Coding of Diagnosis
	11 Appendix
	11.1 List of Tables
	11.2 List of Figures
	11.3 Contacts

